Skip to main content
Log in

Investigating surface effects of GaN nanowires using confocal microscopy at below-band gap excitation

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We analyze the microscopic origins of subgap photoexcitations of individual gallium nitride (GaN) triangular cross-section nanowires (NWs), which are highly photoactive over a broadband spectral range. Using confocal hyperspectral photoluminescence (PL) microscopy, mid-gap states on the NWs were excited using subgap illumination, resulting in two distinct PL spectra corresponding to the polar (0001) and the semipolar \(\left({\bar 1101} \right)/\left({1\bar 101} \right)\) surfaces. Emission spectra are well represented by Gaussian functions with fitted centers of 1.99 ± 0.01 eV and 2.26 ± 0.01 eV, respectively. PL collected from the end facets exhibits interference fringes and a relative blue shift. Furthermore, the PL spectrum shifts strongly to the blue when the excitation intensity is increased. These observations are consistent with a qualitative model in which the PL results from excitation into a broad manifold of surface-associated states which are rapidly populated at a high excitation intensity and can couple to etalon modes via longitudinal photon emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. M.A. Reshchikov and H. Morkoc: Luminescence properties of defects of GaN. J. Appl. Phys. 97, 061310 (2005).

    Article  CAS  Google Scholar 

  2. J.M. Philipps, G.M. Müntze, P. Hille, J. Wallys, J. Schörmann, J. Teubert, D.M. Hofmann, and M. Eickhoff: Radical formation at the gallium nitride nanowire–electrolyte interface by photoactivated charge transfer. Nanotechnology 24 (32), 325701 (2013).

    Article  CAS  Google Scholar 

  3. A.B. Slimane, A. Najar, R. Elafandy, P. San-Román-Alerigi Dá, D. Anjum, T.K. Ng, and B.S. Ooi: On the phenomenon of large photoluminescence red shift in GaN nanoparticles. Nanoscale Res. Lett. 8 (1), 342 (2013).

    Article  CAS  Google Scholar 

  4. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H-J. Choi, and P. Yang: Single-crystal gallium nitride nanotubes. Nature 422 (6932), 599 (2003).

    Article  CAS  Google Scholar 

  5. T. Kuykendall, P.J. Pauzauskie, Y. Zhang, J. Goldberger, D. Sirbuly, J. Denlinger, and P. Yang: Crystallographic alignment of high-density gallium nitride nanowire arrays. Nat. Mater. 3 (8), 524 (2004).

    Article  CAS  Google Scholar 

  6. J. Zhang, L.D. Zhang, X.F. Wang, C.H. Liang, X.S. Peng, and Y.W. Wang: Fabrication and photoluminescence of ordered GaN nanowire arrays. J. Chem. Phys. 115 (13), 5714 (2001).

    Article  CAS  Google Scholar 

  7. H.P.T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G.A. Botton, and Z. Mi: p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si(111). Nano Lett. 11 (5), 1919 (2011).

    Article  CAS  Google Scholar 

  8. A.M. Schwartzberg, S. Aloni, T. Kuykendall, P.J. Schuck, and J.J. Urban: Optical cavity characterization in nanowires via self-generated broad-band emission. Opt. Express 19 (9), 8903 (2011).

    Article  Google Scholar 

  9. A. Sanders, P. Blanchard, K. Bertness, M. Brubaker, C. Dodson, T. Harvey, A. Herrero, D. Rourke, J. Schlager, N. Sanford, A.N. Chiaramonti, A. Davydov, A. Motayed, and D. Tsvetkov: Homoepitaxial n-core:p-shell gallium nitride nanowires: HVPE overgrowth on MBE nanowires. Nanotechnology 22 (46), 465703 (2011).

    Article  CAS  Google Scholar 

  10. T. Kuykendall, S. Aloni, I. Jen-La Plante, and T. Mokari: Growth of GaN@InGaN core–shell and Au–GaN hybrid nanostructures for energy applications. Int. J. Photoenergy 2009, 1 (2009).

    Article  CAS  Google Scholar 

  11. J. Lähnemann, C. Hauswald, M. Wölz, U. Jahn, M. Hanke, L. Geelhaar, and O. Brandt: Localization and defects in axial (In,Ga)N/GaN nanowire heterostructures investigated by spatially resolved luminescence spectroscopy. J. Phys. D: Appl. Phys. 47 (39), 394010 (2014).

    Article  CAS  Google Scholar 

  12. S. Zhao, M.G. Kibria, Q. Wang, H.P.T. Nguyen, and Z. Mi: Growth of large-scale vertically aligned GaN nanowires and their heterostructures with high uniformity on SiOx by catalyst-free molecular beam epitaxy. Nanoscale 5 (12), 5283 (2013).

    Article  CAS  Google Scholar 

  13. T. Ohno, L. Bai, T. Hisatomi, K. Maeda, and K. Domen: Photocatalytic water splitting using modified GaN:ZnO solid solution under visible light: Long-time operation and regeneration of activity. J. Am. Chem. Soc. 134 (19), 8254 (2012).

    Article  CAS  Google Scholar 

  14. R.M. Sheetz, E. Richter, A.N. Andriotis, S. Lisenkov, C. Pendyala, M.K. Sunkara, and M. Menon: Visible-light absorption and large band-gap bowing of GaN1−xSbx from first principles. Phys. Rev. B 84 (7), 075304 (2011).

    Article  CAS  Google Scholar 

  15. A.V. Akimov, J.T. Muckerman, and O.V. Prezhdo: Nonadiabatic dynamics of positive charge during photocatalystic water splitting on GaN(10–10) surface: Charge localization governs splitting efficiency. J. Am. Chem. Soc. 135 (23), 8682 (2013).

    Article  CAS  Google Scholar 

  16. J. Neaton and A.T. Zayak: Berkeley Lab, Molecular Foundry, Berkeley, CA. Personal Communication, 2015.

  17. R. Abe: Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photochem. Photobiol., C 11 (4), 179 (2010).

    Article  CAS  Google Scholar 

  18. J. Qiu, G. Zeng, M-A. Ha, M. Ge, Y. Lin, M. Hettick, B. Hou, A.N. Alexandrova, A. Javey, and S.B. Cronin: Artificial photosynthesis on TiO2-passivated InP nanopillars. Nano Lett. 15 (9), 6177 (2015).

    Article  CAS  Google Scholar 

  19. R. Singh, R.J. Molnar, M.S. Ünlü, and T.D. Moustakas: Intensity dependence of photoluminescence in GaN thin films. Appl. Phys. Lett. 64 (3), 336 (1994).

    Article  CAS  Google Scholar 

  20. F.A. Ponce, D.P. Bour, W. Götz, and P.J. Wright: Spatial distribution of the luminescence in GaN thin films. Appl. Phys. Lett. 68 (1), 57 (1996).

    Article  CAS  Google Scholar 

  21. Q. Li and G.T. Wang: Spatial distribution of defect luminescence in GaN nanowires. Nano Lett. 10 (5), 1554 (2010).

    Article  CAS  Google Scholar 

  22. P.C. Upadhya, Q. Li, G.T. Wang, A.J. Fischer, A.J. Taylor, and R.P. Prasankumar: The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires. Semicond. Sci. Technol. 25 (2), 024017 (2010).

    Article  CAS  Google Scholar 

  23. G.T. Wang, A.A. Talin, D.J. Werder, J.R. Creighton, E. Lai, R.J. Anderson, and I. Arslan: Highly aligned, template-free growth and characterization of vertical GaN nanowires on sapphire by metal–organic chemical vapour deposition. Nanotechnology 17 (23), 5773 (2006).

    Article  CAS  Google Scholar 

  24. M.A. Reshchikov, H. Morkoç, S.S. Park, and K.Y. Lee: Yellow and green luminescence in a freestanding GaN template. Appl. Phys. Lett. 78 (20), 3041 (2001).

    Article  CAS  Google Scholar 

  25. Y. Toda, T. Matsubara, R. Morita, M. Yamashita, K. Hoshino, T. Someya, and Y. Arakawa: Two-photon absorption and multiphoton-induced photoluminescence of bulk GaN excited below the middle of the band gap. Appl. Phys. Lett. 82 (26), 4714 (2003).

    Article  CAS  Google Scholar 

  26. P.J. Schuck, R.D. Grober, A.M. Roskowski, S. Einfeldt, and R.F. Davis: Cross-sectional imaging of pendeo-epitaxial GaN using continuous-wave two-photon microphotoluminescence. Appl. Phys. Lett. 81 (11), 1984 (2002).

    Article  CAS  Google Scholar 

  27. A.H. Chin, T.S. Ahn, H. Li, S. Vaddiraji, C.J. Bardeen, C. Ning, and M.K. Sunkara: Photoluminescence of GaN nanowires of different crystallographic orientations. Nano Lett. 7 (3), 626 (2007).

    Article  CAS  Google Scholar 

  28. S. Xu, Y. Hao, J. Zhang, T. Jiang, L. Yang, X. Lu, and Z. Lin: Yellow luminescence of polar and nonpolar GaN nanowires on r-plane sapphire by metal organic chemical vapor deposition. Nano Lett. 13 (8), 3654 (2013).

    Article  CAS  Google Scholar 

  29. C-C. Chen, C-C. Yeh, C-H. Chen, M-Y. Yu, H-L. Liu, J-J. Wu, K-H. Chen, L-C. Chen, J-Y. Peng, and Y-F. Chen: Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc. 123 (12), 2791 (2001).

    Article  CAS  Google Scholar 

  30. W. Bao, M. Melli, N. Caselli, F. Riboli, D.S. Wiersma, M. Staffaroni, H. Choo, D.F. Ogletree, S. Aloni, J. Bokor, S. Cabrini, F. Intonti, M.B. Salmeron, E. Yablonovitch, P.J. Schuck, and A. Weber-Bargioni: Mapping local charge recombination heterogeneity by multidimensional nanospectroscopic imaging. Science 338, 1317 (2012).

    Article  CAS  Google Scholar 

  31. T.R. Kuykendall, M.V.P. Altoe, D.F. Ogletree, and S. Aloni: Catalyst-directed crystallographic orientation control of GaN nanowire growth. Nano Lett. 14, 6767 (2014).

    Article  CAS  Google Scholar 

  32. C.G. Van de Walle and D. Segev: Microscopic origins of surface states on nitride surfaces. J. Appl. Phys. 101 (8), 081704 (2007).

    Article  CAS  Google Scholar 

  33. J.R. Lakowicz: Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic/Plenum Publishers, New York, NY, 1999); p. 58.

    Book  Google Scholar 

  34. L. Novotny and B. Hecht: Principles of Nano-Optics (Cambridge University Press, Cambridge, England, 2006); pp. 33–351.

    Book  Google Scholar 

  35. K.R. Catchpole and A. Polman: Plasmonic solar cells. Opt. Express 16 (26), 21793 (2008).

    Article  CAS  Google Scholar 

  36. A.M. Pennanen and J.J. Toppari: Direct optical measurement of light coupling into planar waveguide by plasmonic nanoparticles. Opt. Express 21 (S1), A23 (2013).

    Article  Google Scholar 

  37. M.A. Reshchikov, D.O. Demchenko, A. Usikov, H. Helava, and Y. Makarov: Identification of point defects in HVPE-grown GaN by steady-state and time-resolved photoluminescence. In Gallium Nitride Materials and Devices X, J.-I. Chyi, H. Fujioka, and H. Morkoc, eds. (Proceedings of SPIE 9363, Bellingham, Washington, 2015), p. 93630L.

    Google Scholar 

  38. M.A. Reshchikov, H. Morkoç, S.S. Park, and K.Y. Lee: Two charge states of dominant acceptor in unintentionally doped GaN: Evidence from photoluminescence study. Appl. Phys. Lett. 81 (26), 4970 (2002).

    Article  CAS  Google Scholar 

  39. J.L. Lyons, A. Alkauskas, A. Janotti, and C.G. Van de Walle: First-principles theory of acceptors in nitride semiconductors. Phys. Status Solidi B 252 (5), 900 (2015).

    Article  CAS  Google Scholar 

  40. D.O. Demchenko, I.C. Diallo, and M.A. Reshchikov: Yellow luminescence of gallium nitride generated by carbon defect complexes. Phys. Rev. Lett. 110 (8), 087404 (2013).

    Article  CAS  Google Scholar 

  41. J.L. Lyons, A. Janotti, and C.G. Van de Walle: Carbon impurities and the yellow luminescence in GaN. Appl. Phys. Lett. 97 (15), 152108 (2010).

    Article  CAS  Google Scholar 

  42. S.O. Kucheyev, M. Toth, M.R. Phillips, J.S. Williams, C. Jagadish, and G. Li: Chemical origin of the yellow luminescence in GaN. J. Appl. Phys. 91 (9), 5867 (2002).

    Article  CAS  Google Scholar 

  43. S. Dhara, A. Datta, C.T. Wu, Z.H. Lan, K.H. Chen, Y.L. Wang, Y.F. Chen, C.W. Hsu, L.C. Chen, H.M. Lin, and C.C. Chen: Blueshift of yellow luminescence band in self-ion-implanted n-GaN nanowire. Appl. Phys. Lett. 84 (18), 3486 (2004).

    Article  CAS  Google Scholar 

  44. M.A. Reshchikov, P. Visconti, and H. Morkoc: Blue photoluminescence activated by surface states in GaN grown by molecular beam epitaxy. Appl. Phys. Lett. 78, 177 (2001).

    Article  CAS  Google Scholar 

  45. X. Zhang, X. Zhang, J. Xu, X. Shan, J. Xu, and D. Yu: Whispering gallery modes in single triangular ZnO nanorods. Opt. Lett. 34 (16), 2533 (2009).

    Article  CAS  Google Scholar 

  46. M.G. Kibria, S. Zhao, F.A. Chowdhury, Q. Wang, H.P.T. Nguyen, M.L. Trudeau, H. Guo, and Z. Mi: Tuning the surface Fermi level on p-type gallium nitride nanowires for efficient overall water splitting. Nat. Commun. 5, 3825 (2014).

    Article  CAS  Google Scholar 

  47. W. Tian, C. Zhao, J. Leng, R. Cui, and S. Jin: Visualizing carrier diffusion in individual single-crystal organolead halide perovskite nanowires and nanoplates. J. Am. Chem. Soc. 137 (39), 12458 (2015).

    Article  CAS  Google Scholar 

  48. E. Shafran, B.D. Mangum, and J.M. Gerton: Using the near-field coupling of a sharp tip to tune fluorescence-emission fluctuations during quantum-dot blinking. Phys. Rev. Lett. 107 (3), 037403 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We would like to thank Anil Ghimire and Yuchen Yang for facilitating data collection and Michael Reshchikov and Michael Scarpulla for insightful discussion. We would also like to thank Michael Palmer for assistance. This work was supported by a Scialog grant awarded to JMG by the Research Corporation for Science Advancement. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan M. Gerton.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richey-Simonsen, L.R., Borys, N.J., Kuykendall, T.R. et al. Investigating surface effects of GaN nanowires using confocal microscopy at below-band gap excitation. Journal of Materials Research 32, 4076–4086 (2017). https://doi.org/10.1557/jmr.2017.361

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.361

Navigation