Skip to main content

Advertisement

Log in

Functionalization of petroleum coke-based mesoporous carbon for synergistically enhanced capacitive performance

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

With increasing output of petroleum coke, the value-added exploitation of petroleum coke has become a tough problem. Preparing porous carbons is a traditional way to the value-added exploitation of petroleum coke. Here, we used a facile and efficient hard-templating strategy to synthesize mesoporous carbon with high surface area from petroleum coke. N2 adsorption analyses show that the BET specific area and pore volume of the carbons can reach up to 864 m2/g and 1.37 cm3/g, respectively. To utilize the abundant mesopores of the carbons, anthraquinone-modified mesoporous carbon was tested as an electrode material for supercapacitor applications. Electrochemical measurements demonstrated that the specific capacitance reached up to 366 F/g at the current density of 1 A/g, indicating a promising prospect of using this carbon in electrochemical energy-storage field. More importantly, the strategy used in this work can be easily modified to prepare other nano-carbon materials from petroleum coke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

SCHEME 1
FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
SCHEME 2

Similar content being viewed by others

References

  1. H. Al-Haj-Ibrahim and B.I. Morsi: Desulfurization of petroleum coke: A review. Ind. Eng. Chem. Res. 31(8), 1835 (1992).

    Article  CAS  Google Scholar 

  2. N. Rambabu, R. Azargohar, A.K. Dalai, and J. Adjaye: Evaluation and comparison of enrichment efficiency of physical/chemical activations and functionalized activated carbons derived from fluid petroleum coke for environmental applications. Fuel Process. Technol. 106(2), 501 (2013).

    Article  CAS  Google Scholar 

  3. T. Kawano, M. Kubota, M.S. Onyango, F. Watanabe, and H. Matsuda: Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump. Appl. Therm. Eng. 28(8), 865 (2008).

    Article  CAS  Google Scholar 

  4. M. Kubota, T. Ito, F. Watanabe, and H. Matsuda: Pore structure and water adsorptivity of petroleum coke-derived activated carbon for adsorption heat pump—Influence of hydrogen content of coke. Appl. Therm. Eng. 31(8), 1495 (2011).

    Article  CAS  Google Scholar 

  5. X. Li, Q. Zhang, L. Tang, P. Lu, F. Sun, and L. Li: Catalytic ozonation of p-chlorobenzoic acid by activated carbon and nickel supported activated carbon prepared from petroleum coke. J. Hazard. Mater. 163(1), 115 (2009).

    Article  CAS  Google Scholar 

  6. C. Lu, S. Xu, and C. Liu: The role of K2CO3 during the chemical activation of petroleum coke with KOH. J. Anal. Appl. Pyrolysis 87(2), 282 (2010).

    Article  CAS  Google Scholar 

  7. C. Peng, Z. Wen, Y. Qin, S.M. Lukas, C. Li, S. Yang, D. Shi, and J. Yang: Three-dimensional graphitized carbon nano vesicles for high-performance supercapacitors based on ionic liquids. ChemSusChem 7(3), 777 (2014).

    Article  CAS  Google Scholar 

  8. M. Sánchez-Polo and J. Rivera-Utrilla: Ozonation of naphthalenetrisulphonic acid in the presence of activated carbons prepared from petroleum coke. Appl. Catal., B 67(1–2), 113 (2006).

    Article  CAS  Google Scholar 

  9. R. Xiao, S. Xu, Q. Li, and Y. Su: The effects of hydrogen on KOH activation of petroleum coke. J. Anal. Appl. Pyrolysis 96(12), 120 (2012).

    Article  CAS  Google Scholar 

  10. M. Yuan, S. Tong, S. Zhao, and C.Q. Jia: Adsorption of polycyclic aromatic hydrocarbons from water using petroleum coke-derived porous carbon. J. Hazard. Mater. 181(1–3), 1115 (2010).

    Article  CAS  Google Scholar 

  11. H. Zhang, Y. Jiang, Y. Hu, A. Maclennan, W. Hui, and C. Wang: Effect of pyrite in precursor on capacitance behavior of prepared activated carbon. Ind. Eng. Chem. Res. 53(24), 10125 (2014).

    Article  CAS  Google Scholar 

  12. P. Zhang, X.H. Liu, K.X. Li, and Y.R. Lu: Heteroatom-doped highly porous carbon derived from petroleum coke as efficient cathode catalyst for microbial fuel cells. Int. J. Hydrogen Energy 40(39), 13530 (2015).

    Article  CAS  Google Scholar 

  13. W. Qiao, S.H. Yoon, and I. Mochida: KOH activation of needle coke to develop activated carbons for high-performance EDLC. Energy Fuels 20(4), 1680 (2006).

    Article  CAS  Google Scholar 

  14. X. Wei and Y.Z. Feng: Effects of preoxidation on the surface properties of super active carbon. New Carbon Mater. 17(3), 25 (2002).

    Google Scholar 

  15. C. Lu, S. Xu, Y. Gan, S. Liu, and C. Liu: Effect of pre-carbonization of petroleum cokes on chemical activation process with KOH. Carbon 43(11), 2295 (2005).

    Article  CAS  Google Scholar 

  16. B. Jiang, Y. Zhang, J. Zhou, K. Zhang, and S. Chen: Effects of chemical modification of petroleum cokes on the properties of the resulting activated carbon. Fuel 87(10–11), 1844 (2008).

    Article  CAS  Google Scholar 

  17. D. Tateishi, K. Esumi, and H. Honda: Formation of carbonaceous gel. Carbon 29(8), 1296 (1991).

    Article  CAS  Google Scholar 

  18. D. Tateishi, K. Esumi, H. Honda, and H. Oda: Preparation of carbonaceous gel beads. Carbon 30(6), 942 (1992).

    Article  CAS  Google Scholar 

  19. K. Esumi, S. Eshima, Y. Murakami, H. Honda, and H. Oda: Preparation of hollow carbon-microbeads from water-in-oil emulsion using amphiphilic carbonaceous material. Colloids Surf., A 108(1), 113 (1996).

    Article  CAS  Google Scholar 

  20. Z. Li, W. Yan, and S. Dai: A novel vesicular carbon synthesized using amphiphilic carbonaceous material and micelle templating approach. Carbon 42(4), 767 (2004).

    Article  CAS  Google Scholar 

  21. H. Oda, D. Tateishi, K. Esumi, and H. Honda: The formation of porous carbon materials from carbonaceous gel. Carbon 32(2), 355 (1994).

    Article  CAS  Google Scholar 

  22. J. Wang, M. Chen, C. Wang, J. Wang, and J. Zheng: Preparation of mesoporous carbons from amphiphilic carbonaceous material for high-performance electric double-layer capacitors. J. Power Sources 196(1), 550 (2011).

    Article  CAS  Google Scholar 

  23. J. Wang, M. Chen, C. Wang, J. Wang, and J. Zheng: A facile method to prepare carbon aerogels from amphiphilic carbon material. Mater. Lett. 68(1), 446 (2012).

    Article  CAS  Google Scholar 

  24. Y. Yuan, C. Zhang, C. Wang, and M. Chen: Amphiphilic carbonaceous material-based hierarchical porous carbon aerogels for supercapacitors. J. Solid State Electrochem. 19(2), 619 (2014).

    Article  CAS  Google Scholar 

  25. S. Han and T. Hyeon: Simple silica-particle template synthesis of mesoporous carbons. Chem. Commun. 19(19), 1955 (1999).

    Article  Google Scholar 

  26. S. Li, T. Chungui, F. Yu, Y. Ying, Y. Jie, W. Lei, and F. Honggang: Nitrogen-doped porous graphitic carbon as an excellent electrode material for advanced supercapacitors. Chem.–Eur. J. 20(2), 564 (2014).

    Article  CAS  Google Scholar 

  27. A. Olejniczak, M. Lezanska, J. Wloch, A. Kucinska, and J.P. Lukaszewicz: Novel nitrogen-containing mesoporous carbons prepared from chitosan. J. Mater. Chem. A 1(31), 8961 (2013).

    Article  CAS  Google Scholar 

  28. H. Wang, H. Yi, C. Zhu, X. Wang, and H.J. Fan: Functionalized highly porous graphitic carbon fibers for high-rate supercapacitive electrodes. Nano Energy 13, 658 (2015).

    Article  CAS  Google Scholar 

  29. H-L. Wang, Z-Q. Shi, J. Jin, C-B. Chong, and C-Y. Wang: Properties and sodium insertion behavior of phenolic resin-based hard carbon microspheres obtained by a hydrothermal method. J. Electroanal. Chem. 755, 87 (2015).

    Article  CAS  Google Scholar 

  30. H.A. Le, T.L. Le, S. Chin, and J. Jurng: Photocatalytic degradation of methylene blue by a combination of TiO2-anatase and coconut shell activated carbon. Powder Technol. 225(7), 167 (2012).

    Article  CAS  Google Scholar 

  31. L.X. Jin, X. Wei, Z. Jin, W.G. Qiang, Z.S. Ping, Y.Z. Feng, X.Q. Zhong, and Q.S. Zhang: Excellent capacitive performance of a three-dimensional hierarchical porous graphene/carbon composite with a superhigh surface area. Chem.–Eur. J. 20(41), 13314 (2014).

    Article  CAS  Google Scholar 

  32. R. Kumar, V. More, S.P. Mohanty, S.S. Nemala, S. Mallick, and P. Bhargava: A simple route to making counter electrode for dye sensitized solar cells (DSSCs) using sucrose as carbon precursor. J. Colloid Interface Sci. 459, 146 (2015).

    Article  CAS  Google Scholar 

  33. R. Qiang, Z. Hu, Y. Yang, Z. Li, N. An, X. Ren, H. Hu, and H. Wu: Monodisperse carbon microspheres derived from potato starch for asymmetric supercapacitors. Electrochim. Acta 167, 303 (2015).

    Article  CAS  Google Scholar 

  34. Z. Li, W. Lv, C. Zhang, B. Li, F. Kang, and Q-H. Yang: A sheet-like porous carbon for high-rate supercapacitors produced by the carbonization of an eggplant. Carbon 92, 11 (2015).

    Article  CAS  Google Scholar 

  35. W. Huanlei, X. Zhanwei, K. Alireza, L. Zhi, C. Kai, T. Xuehai, S. Tyler James, C.K. King’Ondu, C.M.B. Holt, and B.C. Olsen: Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7(6), 5131 (2013).

    Article  CAS  Google Scholar 

  36. J. Huang, J. Wang, C. Wang, H. Zhang, C. Lu, and J. Wang: Hierarchical porous graphene carbon-based supercapacitors. Chem. Mater. 27, 2107 (2015).

    Article  CAS  Google Scholar 

  37. X. Li and B. Wei: Supercapacitors based on nanostructured carbon. Nano Energy 2(2), 159 (2012).

    Article  CAS  Google Scholar 

  38. F. Béguin, V. Presser, A. Balducci, and E. Frackowiak: Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26(14), 2219 (2014).

    Article  CAS  Google Scholar 

  39. G. Xiong, C. Meng, R.G. Reifenberger, P.P. Irazoqui, and T.S. Fisher: A review of graphene-based electrochemical microsupercapacitors. Electroanalysis 26(1), 30 (2014).

    Article  CAS  Google Scholar 

  40. M. Vangari, T. Pryor, and J. Li: Supercapacitors: Review of materials and fabrication methods. J. Energy Eng. 139(2), 72 (2013).

    Article  Google Scholar 

  41. S. He and W. Chen: High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites. J. Power Sources 262, 391 (2014).

    Article  CAS  Google Scholar 

  42. M.L. Huang, C.D. Gu, X. Ge, X.L. Wang, and J.P. Tu: NiO nanoflakes grown on porous graphene frameworks as advanced electrochemical pseudocapacitor materials. J. Power Sources 259, 98 (2014).

    Article  CAS  Google Scholar 

  43. M. Sawangphruk, P. Srimuk, P. Chiochan, A. Krittayavathananon, S. Luanwuthi, and J. Limtrakul: High-performance supercapacitor of manganese oxide/reduced graphene oxide nanocomposite coated on flexible carbon fiber paper. Carbon 60, 109 (2013).

    Article  CAS  Google Scholar 

  44. Z. Niu, P. Luan, Q. Shao, H. Dong, J. Li, J. Chen, D. Zhao, L. Cai, W. Zhou, X. Chen, and S. Xie: A “skeleton/skin” strategy for preparing ultrathin free-standing single-walled carbon nanotube/polyaniline films for high performance supercapacitor electrodes. Energy Environ. Sci. 5(9), 8726 (2012).

    Article  CAS  Google Scholar 

  45. Y. Song, J-L. Xu, and X-X. Liu: Electrochemical anchoring of dual doping polypyrrole on graphene sheets partially exfoliated from graphite foil for high-performance supercapacitor electrode. J. Power Sources 249, 48 (2014).

    Article  CAS  Google Scholar 

  46. Y. Xu, Z. Lin, X. Huang, W. Yang, H. Yu, and X. Duan: Functionalized graphene hydrogel-based high-performance supercapacitors. Adv. Mater. 25(40), 5779 (2013).

    Article  CAS  Google Scholar 

  47. N. An, F. Zhang, Z. Hu, Z. Li, L. Li, Y. Yang, B. Guo, and Z. Lei: Non-covalently functionalizing a graphene framework by anthraquinone for high-rate electrochemical energy storage. RSC Adv. 5, 23942 (2015).

    Article  CAS  Google Scholar 

  48. X. Chen, H. Wang, H. Yi, X. Wang, X. Yan, and Z. Guo: Anthraquinone on porous carbon nanotubes with improved supercapacitor performance. J. Phys. Chem. C 118(16), 8262 (2014).

    Article  CAS  Google Scholar 

  49. Q. May, S. Daniel, M.F. Wasylkiw, and D.K. Smith: Voltammetry of quinones in unbuffered aqueous solution: Reassessing the roles of proton transfer and hydrogen bonding in the aqueous electrochemistry of quinones. J. Am. Chem. Soc. 129(42), 12847 (2007).

    Article  CAS  Google Scholar 

  50. X. Wu, W. Xing, J. Florek, J. Zhou, G. Wang, S. Zhuo, Q. Xue, Z. Yan, and F. Kleitz: On the origin of the high capacitance of carbon derived from seaweed with an apparently low surface area. J. Mater. Chem. A 2, 18998 (2014).

    Article  CAS  Google Scholar 

  51. X. Wu, J. Zhou, W. Xing, Y. Zhang, P. Bai, B. Xu, S. Zhuo, Q. Xue, and Z. Yan: Insight into high areal capacitances of low apparent surface area carbons derived from nitrogen-rich polymers. Carbon 94, 560 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by National Natural Science Foundation of China (21476264), Distinguished Young Scientist Foundation of Shandong Province (JQ201215), Taishan Scholar Foundation (ts20130929) and Fundamental Research Funds for the Central Universities (15CX05029A, 15CX08009A), Graduate Student Innovation Project of China University of Petroleum (East China) (YCXJ2016082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xing.

Supplementary Material

43578_2017_32071248_MOESM1_ESM.docx

Supporting Information: Functionalization of petroleum coke-based mesoporous carbon for synergistically enhanced capacitive performance (approximately 18.3 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Xing, W., Subhan, F. et al. Functionalization of petroleum coke-based mesoporous carbon for synergistically enhanced capacitive performance. Journal of Materials Research 32, 1248–1257 (2017). https://doi.org/10.1557/jmr.2017.36

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.36

Navigation