Skip to main content
Log in

Hydrogen embrittlement behaviors of ultrafine-grained 22Mn–0.6C austenitic twinning induced plasticity steel

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hydrogen embrittlement behaviors of a 22Mn–0.6C (mass%) twinning induced plasticity (TWIP) steel with the grain sizes of 21 µm (coarse grain) and 0.58 µm (ultrafine grain) were investigated by means of hydrogen precharging and subsequent slow strain rate tensile tests. The total elongation and fracture stress for both of the coarse-grained and ultrafine-grained specimens decreased by hydrogen charging. The area fraction of the brittle fracture surfaces in the ultrafine-grained specimen was much smaller than that in the coarse-grained specimen. Three-point bending test also showed that the reduction of the fracture toughness by the introduction of hydrogen was much smaller in the ultrafine-grained specimen than that in the coarse-grained specimen. It was concluded that the suppressed hydrogen embrittlement by grain refinement in the 22Mn–0.6C TWIP steel was probably due to the smaller hydrogen contents per unit grain boundary area in the finer grain-sized material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. O. Grassel and G. Frommeyer: Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe–Mn–Si–Al steels. Mater. Sci. Technol. 14, 1213 (1998).

    Article  CAS  Google Scholar 

  2. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takamura, and K. Kunishige: Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scr. Mater. 59, 963 (2008).

    Article  CAS  Google Scholar 

  3. O. Bouaziz, S. Allian, C.P. Scott, P. Cugy, and D. Barbier: High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr. Opin. Solid State Mater. Sci. 15, 141 (2011).

    Article  CAS  Google Scholar 

  4. P.H. Adler, G.B. Olson, and W.S. Owen: Strain hardening of Hadfield manganese steel. Metall. Mater. Trans. A 17, 1725 (1986).

    Article  Google Scholar 

  5. B.C.D. Cooman, O. Kwon, K.G. Chin: State-of-the-knowledge on TWIP steel. Mater. Sci. and Tech. 28, 513 (2012).

    Article  Google Scholar 

  6. G. Frommeyer, U. Brux, and P. Neumann: Supra-ductile and high-strength manganese–TRIP/TWIP steels for high energy absorption purposes. ISIJ Int. 43, 438 (2003).

    Article  CAS  Google Scholar 

  7. M. Koyama, E. Akiyama, and K. Tsuzaki: Effect of hydrogen content on the embrittlement in a Fe–Mn–C twinning-induced plasticity steel. Corros. Sci. 59, 277 (2012).

    Article  CAS  Google Scholar 

  8. I.J. Park, K.H. Jeong, J.G. Jung, C.S. Lee, and Y.K. Lee: The mechanism of enhanced resistance to the hydrogen delayed fracture in Al-added Fe–18Mn–0.6C twinning-induced plasticity steels. Int. J. Hydrogen Energy 37, 9925 (2012).

    Article  CAS  Google Scholar 

  9. M. Koyama, E. Akiyama, K. Tsuzaki, and D. Raabe: Hydrogen-assisted failure in a twinning-induced plasticity steel studied under in situ hydrogen charging by electron channeling contrast imaging. Acta Mater. 61, 4607 (2013).

    Article  CAS  Google Scholar 

  10. M. Koyama, E. Akiyama, T. Sawaguchi, D. Raabe, and K. Tsuzaki: Hydrogen-induced cracking at grain and twin boundaries in an Fe–Mn–C austenitic steel. Scr. Mater. 66, 459 (2012).

    Article  CAS  Google Scholar 

  11. M. Koyama, E. Akiyama, and K. Tsuzaki: Hydrogen embrittlement in a Fe–Mn–C ternary twinning-induced plasticity steel. Corros. Sci. 54, 1 (2012).

    Article  CAS  Google Scholar 

  12. J.H. Ryu, S.K. Kim, C.S. Lee, D.W. Suh, and H.K.D.H. Bhadeshia: Effect of aluminum on hydrogen-induced fracture behavior in austenitic Fe–Mn–C steel. Proc. R. Soc., Ser. A 469, 20120458 (2012).

    Article  Google Scholar 

  13. K.G. Chin, C.Y. Kang, S.Y. Shin, S. Hong, S. Lee, H.S. Kim, K.H. Kim, and N.J. Kim: Effects of Al addition on deformation and fracture mechanisms in two high manganese TWIP steels. Mater. Sci. Eng., A 528, 2922 (2011).

    Article  Google Scholar 

  14. A. Shibata, H. Takahashi, and N. Tsuji: Microstructural and crystallographic features of hydrogen-related crack propagation in low carbon martensitic steel. ISIJ Int. 52, 208 (2012).

    Article  CAS  Google Scholar 

  15. I.J. Park, S.M. Lee, H.H. Jeon, and Y.K. Lee: The advantage of grain refinement in the hydrogen embrittlement of Fe–18Mn–0.6C twinning-induced plasticity steel. Corros. Sci. 93, 63 (2015).

    Article  CAS  Google Scholar 

  16. N. Zan, H. Ding, X.F. Guo, Z.Y. Tang, and W. Bleck: Effects of grain size on hydrogen embrittlement in a Fe–22Mn–0.6C TWIP steel. Int. J. Hydrogen Energy 40, 10687 (2015).

    Article  CAS  Google Scholar 

  17. T. Michler, C.S. Marchi, J. Naumann, S. Weber, and M. Martin: Hydrogen environment embrittlement of stable austenitic steels. Int. J. Hydrogen Energy 37, 16231 (2012).

    Article  CAS  Google Scholar 

  18. S.H. Chen, M.J. Zhao, and L.J. Rong: Effect of grain size on the hydrogen embrittlement sensitivity of a precipitation strengthened Fe–Ni based alloy. Mater. Sci. Eng., A 594, 98 (2014).

    Article  CAS  Google Scholar 

  19. R. Saha, R. Ueji, and N. Tsuji: Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel. Scr. Mater. 68, 813 (2013).

    Article  CAS  Google Scholar 

  20. Y. Bai, Y. Momotani, M.C. Chen, A. Shibata, and N. Tsuji: Effect of grain refinement on hydrogen embrittlement behaviors of high-Mn TWIP steel. Mater. Sci. Eng., A 651, 935 (2016).

    Article  CAS  Google Scholar 

  21. Y.Z. Tian, Y. Bai, M.C. Chen, A. Shibata, D. Terada, and N. Tsuji: Enhanced strength and ductility in an ultrafine-grained Fe–22Mn–0.6C austenitic steel having fully recrystallized structure. Metall. Mater. Trans. A 45, 5300 (2014).

    Article  CAS  Google Scholar 

  22. A. Dumay, J.P. Chateau, S. Allain, S. Migot, and O. Bouaziz: Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel. Mater. Sci. Eng., A 483–484, 184 (2008).

    Article  Google Scholar 

  23. M. Nagumo, K. Takai, and N. Okuda: Nature of hydrogen trapping sites in steels induced by plastic deformation. J. Alloys Compd. 293–295, 310 (1999).

    Article  Google Scholar 

  24. W.Y. Choo and J.Y. Lee: Thermal analysis of trapped hydrogen in pure iron. Metall. Mater. Trans. A 13, 135 (1982).

    Article  Google Scholar 

  25. T. Tsuchida, T. Hara, and K. Tsuzaki: Relationship between microstructure and hydrogen absorption behavior in a V-bearing high strength steel. Tetsu to Hagane 88, 771 (2002).

    Article  CAS  Google Scholar 

  26. K. Takai and R. Watanuki: Hydrogen in trapping states innocuous to environmental degradation of high-strength steels. ISIJ Int. 43, 520 (2003).

    Article  CAS  Google Scholar 

  27. J. Chêne, M. Aucouturier, R. Arnould-Laurent, P. Tison, and J.P. Fidelle: Hydrogen transport by dislocations and hydrogen embrittlement in stainless steels. In Third International Conference on the Effect of Hydrogen on Behavior of Materials, I.M. Bernstein and A.W. Thompson, eds. (Jackson Lake, Wyoming, USA, 1981); p. 583.

    Google Scholar 

  28. Y.S. Chun, K.T. Park, and C.S. Lee: Delayed static failure of twinning-induced plasticity steels. Scr. Mater. 66, 960 (2012).

    Article  CAS  Google Scholar 

  29. J.A. Ronevich, S.K. Kim, J.G. Speer, and D.K. Matlock: Hydrogen effects on cathodically charged twinning-induced plasticity steel. Scr. Mater. 66, 956 (2012).

    Article  CAS  Google Scholar 

  30. N. Tsuji, Y. Ito, Y. Sato, and Y. Miyamoto: Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing. Scr. Mater. 47, 893 (2002).

    Article  CAS  Google Scholar 

  31. T. Michler, C.S. Marchi, J. Naumann, S. Weber, M. Martin: Hydrogen environment embrittlement of stable austenitic steels. Inter. J. Hydrogen Energy 37, 16231 (2012).

    Article  CAS  Google Scholar 

  32. K.H. So, J.S. Kim, Y.S. Chun, K.T. Park, Y.K. Lee, and C.S. Lee: Hydrogen delayed fracture properties and internal hydrogen behavior of a Fe–18Mn–1.5Al–0.6C TWIP steel. ISIJ Int. 49, 1952 (2009).

    Article  CAS  Google Scholar 

  33. R.A. Oriani, J.P. Hirth, and M. Smialowski: Hydrogen Degradation of Ferrous Alloy (Noyes Publications, Park Ridge, 1985).

    Google Scholar 

  34. J. Weertman and J.R. Weertman: Elementary Dislocation Theory (Oxford University Press, New York, 1992).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The present study was financially supported by the Elements Strategy Initiative for Structural Materials (ESISM), the Grant-in-Aid for Scientific Research (S) (No. 15H05767), and the Grant-in-Aid for Scientific Research on Innovative Area “Bulk Nanostructured Metals” (area No. 2201), all through the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. Yu Bai was supported by the Japanese Government Scholarship. All these supports are gratefully appreciated by the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Bai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Tian, Y., Gao, S. et al. Hydrogen embrittlement behaviors of ultrafine-grained 22Mn–0.6C austenitic twinning induced plasticity steel. Journal of Materials Research 32, 4592–4604 (2017). https://doi.org/10.1557/jmr.2017.351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.351

Navigation