Skip to main content
Log in

On the effect of precipitates on the cyclic deformation behavior of an Al-Mg-Si alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Fatigue is one of the major failure modes of structural materials. While the effects of strengthening precipitates on the mechanical properties of heat treatable aluminum alloys during forming operations are well-studied, only little is known about the related mechanisms during fatigue. We study the influence of precipitates during low cycle fatigue of an Al-Si-Mg alloy by mechanical testing and microstructure characterisation using (scanning) transmission electron microscopy. Specifically, we have investigated under-aged, peak-aged, and over-aged precipitation states. The experiments reveal considerable influence of the precipitate state on the mechanical properties and the formed dislocation structures. Under-aged AA6016 experiences cyclic hardening accompanied by dynamic precipitation and precipitate growth during cyclic deformation, whereas peak-aged AA6016 shows a saturated cyclic stress behavior and the formation of a ‘prevein’-like dislocation structure aligned along [001]Al directions. Over-aged AA6016 exhibits cyclic softening, which is assumed to be due to frequent Orowan-looping of dislocations around incoherent precipitates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Haszler, and A. Vieregge: Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng., A 280, 37 (2000).

    Article  Google Scholar 

  2. G.A. Edwards, K. Stiller, G.L. Dunlop, and M.J. Couper: The precipitation sequence in Al–Mg–Si alloys. Acta Mater. 46, 3893 (1998).

    Article  CAS  Google Scholar 

  3. C.D. Marioara, S.J. Andersen, J. Jansen, and H.W. Zandbergen: The influence of temperature and storage time at RT on nucleation of the β″ phase in a 6082 Al–Mg–Si alloy. Acta Mater. 51, 789 (2003).

    Article  CAS  Google Scholar 

  4. H. Mughrabi: Fatigue, an everlasting materials problem-still en vogue. Procedia Eng. 2, 3 (2010).

    Article  CAS  Google Scholar 

  5. F.C. Campbell: Elements of Metallurgy and Engineering Alloys (ASM International, Materials Park, Ohio, 2008).

    Book  Google Scholar 

  6. C.R. Hutchinson, F. De Geuser, Y. Chen, and A. Deschamps: Quantitative measurements of dynamic precipitation during fatigue of an Al–Zn–Mg–(Cu) alloy using small-angle X-ray scattering. Acta Mater. 74, 96 (2014).

    Article  CAS  Google Scholar 

  7. S. Nandy, A.P. Sekhar, T. Kar, K.K. Ray, and D. Das: Influence of ageing on the low cycle fatigue behaviour of an Al–Mg–Si alloy. Philos. Mag. 97, 1 (2017).

    Article  CAS  Google Scholar 

  8. C.S. Tsao, C.Y. Chen, U.S. Jeng, and T.Y. Kuo: Precipitation kinetics and transformation of metastable phases in Al–Mg–Si alloys. Acta Mater. 54, 4621 (2006).

    Article  CAS  Google Scholar 

  9. W. Yang, L. Huang, R. Zhang, M. Wang, Z. Li, Y. Jia, R. Lei, and X. Sheng: Electron microscopy studies of the age-hardening behaviors in 6005A alloy and microstructural characterizations of precipitates. J. Alloys Compd. 514, 220 (2012).

    Article  CAS  Google Scholar 

  10. M. Torsæter, H.S. Hasting, W. Lefebvre, C.D. Marioara, J.C. Walmsley, S.J. Andersen, and R. Holmestad: The influence of composition and natural aging on clustering during preaging in Al–Mg–Si alloys. J. Appl. Phys. 108, 073527 (2010).

    Article  CAS  Google Scholar 

  11. F. De Geuser, W. Lefebvre, and D. Blavette: 3D atom probe study of solute atoms clustering during natural ageing and pre-ageing of an Al–Mg–Si alloy. Philos. Mag. Lett. 86, 227 (2006).

    Article  CAS  Google Scholar 

  12. J.D. Bryant: The effects of preaging treatments on aging kinetics and mechanical properties in AA6111 aluminum autobody sheet. Metall. Mater. Trans. A 30 (1999).

  13. S. Pogatscher, H. Antrekowitsch, M. Werinos, F. Moszner, S.S.A. Gerstl, M.F. Francis, W.A. Curtin, J.F. Löffler, and P.J. Uggowitzer: Diffusion on demand to control precipitation aging: Application to Al–Mg–Si alloys. Phys. Rev. Lett. 112, 225701 (2014).

    Article  CAS  Google Scholar 

  14. A. Guinier: Structure of age-hardened aluminium–copper alloys. Nature 142, 569 (1938).

    Article  CAS  Google Scholar 

  15. G.D. Preston: Structure of age-hardened aluminium–copper alloys. Nature 142, 570 (1938).

    Article  CAS  Google Scholar 

  16. K. Matsuda, T. Naoi, K. Fujii, Y. Uetani, T. Sato, A. Kamio, and S. Ikeno: Crystal structure of the β″ phase in an Al–1.0 mass% Mg2Si–0.4 mass% Si alloy. Mater. Sci. Eng., A 262, 232 (1999).

    Article  Google Scholar 

  17. S.J. Andersen, C.D. Marioara, M. Torsæter, R. Bjørge, F.J.H. Ehlers, R. Holmestad, O. Reiso, and J. Røyset: Behind structure and relation of precipitates in Al–Mg–Si and related alloys: In Proceeding Proceedings of the 12th International Conference on Aluminium Alloys, edited by S. Kumai, O. Umezawa, Y. Takayama, T. Tsuchida, and T. Sato. (Yokohama, Japan); p. 413.

  18. J.P. Lynch, L.M. Brown, and M.H. Jacobs: Microanalysis of age-hardening precipitates in aluminium alloys. Acta Metall. 30, 1389 (1982).

    Article  CAS  Google Scholar 

  19. M. Jacobs: The structure of the metastable precipitates formed during ageing of an Al–Mg–Si alloy. Philos. Mag. 26, 1 (1972).

    Article  CAS  Google Scholar 

  20. C.D. Marioara, H. Nordmark, S.J. Andersen, and R. Holmestad: Post-β″ phases and their influence on microstructure and hardness in 6xxx Al–Mg–Si alloys. J. Mater. Sci. 41, 471 (2006).

    Article  CAS  Google Scholar 

  21. O. Vorren and N. Ryum: Cyclic deformation of Al-single crystals at low constant plastic strain amplitudes. Acta Metall. 35, 855 (1987).

    Article  CAS  Google Scholar 

  22. M. Videm and N. Ryum: Cyclic deformation of [001] aluminium single crystals. Mater. Sci. Eng., A 219, 1 (1996).

    Article  Google Scholar 

  23. T. Fujii, N. Sawatari, S. Onaka, and M. Kato: Cyclic deformation of pure aluminum single crystals with double-slip orientations. Mater. Sci. Eng., A 387, 486 (2004).

    Article  CAS  Google Scholar 

  24. P. Li, S. Li, Z. Wang, and Z. Zhang: Cyclic deformation behaviors of \(\left[{\bar 579} \right]\)-oriented Al single crystals. Metall. Mater. Trans. A 41, 2532 (2010).

    Article  CAS  Google Scholar 

  25. J. Wang, Z.G. Zhu, Q.F. Fang, and G.D. Liu: The influence of the crystallographic orientation on the behavior of fatigue in Al single crystals. Mater. Res. Bull. 34, 407 (1999).

    Article  CAS  Google Scholar 

  26. O. Vorren and N. Ryum: Cyclic deformation of Al single crystals: Effect of the crystallographic orientation. Acta Metall. 36, 1443 (1988).

    Article  CAS  Google Scholar 

  27. Y.B. Xia: The effect of crystal orientation on mechanical behavior during fatigue in aluminium single crystals. Scr. Metall. 29, 999 (1993).

    Article  CAS  Google Scholar 

  28. A. Giese and Y. Estrin: Mechanical behaviour and microstructure of fatigued aluminium single crystals. Scr. Metall. 28, 803 (1993).

    Article  CAS  Google Scholar 

  29. T. Zhai, J.W. Martin, and G.A.D. Briggs: Fatigue damage at room temperature in aluminium single crystals—II. TEM. Acta Mater. 44, 1729 (1996).

    Article  CAS  Google Scholar 

  30. J. Nellessen, S. Sandlöbes, and D. Raabe: Low cycle fatigue in aluminum single and bi-crystals: On the influence of crystal orientation. Mater. Sci. Eng., A 668, 166 (2016).

    Article  CAS  Google Scholar 

  31. T. Zhai, J.W. Martin, G.A.D. Briggs, and A.J. Wilkinson: Fatigue damage at room temperature in aluminium single crystals—III. Lattice rotation. Acta Mater. 44, 3477 (1996).

    Article  CAS  Google Scholar 

  32. T. Zhai, J.W. Martin, and G.A.D. Briggs: Fatigue damage in aluminum single crystals—I. On the surface containing the slip burgers vector. Acta Metall. 43, 3813 (1995).

    Article  CAS  Google Scholar 

  33. H.D. Chandler and J.V. Bee: Cyclic strain induced precipitation in a solution treated aluminium alloy. Acta Metall. 35, 2503 (1987).

    Article  CAS  Google Scholar 

  34. T.S. Srivatsan, S. Sriram, and C. Daniels: Influence of temperature on cyclic stress response and fracture behavior of aluminum alloy 6061. Eng. Fract. Mech. 56, 531 (1997).

    Article  Google Scholar 

  35. D.H. Lee, J.H. Park, and S.W. Nam: Enhancement of mechanical properties of Al–Mg–Si alloys by means of manganese dispersoids. Mater. Sci. Technol. 15, 450 (1999).

    Article  CAS  Google Scholar 

  36. P.C. Lam, T.S. Srivatsan, B. Hotton, and M. Al-Hajri: Cyclic stress response characteristics of an aluminum–magnesium–silicon alloy. Mater. Lett. 45, 186 (2000).

    Article  CAS  Google Scholar 

  37. L.P. Borrego, L.M. Abreu, J.M. Costa, and J.M. Ferreira: Analysis of low cycle fatigue in AlMgSi aluminium alloys. Eng. Failure Anal. 11, 715 (2004).

    Article  CAS  Google Scholar 

  38. M.M. Yahya, N. Mallik, and I. Chakrabarty: Low cycle fatigue (LCF) behavior of AA6063 aluminium alloy at room temperature. Int. J. Emerging Adv. Res. Technol. 5, 100 (2015).

    Google Scholar 

  39. D. Azzam, C.C. Menzemer, and T.S. Srivatsan: The fracture behavior of an Al–Mg–Si alloy during cyclic fatigue. Mater. Sci. Eng., A 527, 5341 (2010).

    Article  CAS  Google Scholar 

  40. X-q. Ding, G-q. He, and C-s. Chen: Study on the dislocation sub-structures of Al–Mg–Si alloys fatigued under non-proportional loadings. J. Mater. Sci. 45, 4046 (2010).

    Article  CAS  Google Scholar 

  41. Y. Takahashi, T. Shikama, S. Yoshihara, T. Aiura, and H. Noguchi: Study on dominant mechanism of high-cycle fatigue life in 6061-T6 aluminum alloy through microanalyses of microstructurally small cracks. Acta Mater. 60, 2554 (2012).

    Article  CAS  Google Scholar 

  42. S. Nandy, A.P. Sekhar, D. Das, S.J. Hossain, and K.K. Ray: Influence of dynamic precipitation during low cycle fatigue of under-aged AA6063 alloy. Trans. Indian Inst. Met. 69, 319 (2016).

    Article  Google Scholar 

  43. C. Laird, V.J. Langelo, M. Hollrah, N.C. Yang, and R. De La Veaux: The cyclic stress–strain response of precipitation hardened Al–15 wt% Ag alloy. Mater. Sci. Eng. 32, 137 (1978).

    Article  CAS  Google Scholar 

  44. R.G. Pahl and J.B. Cohen: Effects of fatigue on the GP zones in Al–Zn alloys. Metall. Mater. Trans. A 15, 1519 (1984).

    Article  Google Scholar 

  45. A. Farrow and C. Laird: Precipitation in solution-treated aluminium–4 wt% copper under cyclic strain. Philos. Mag. 90, 3549 (2010).

    Article  CAS  Google Scholar 

  46. W.Z. Han, Y. Chen, A. Vinogradov, and C.R. Hutchinson: Dynamic precipitation during cyclic deformation of an underaged Al–Cu alloy. Mater. Sci. Eng., A 528, 7410 (2011).

    Article  CAS  Google Scholar 

  47. M. Hörnqvist and B. Karlsson: Dynamic strain ageing and dynamic precipitation in AA7030 during cyclic deformation. Procedia Eng. 2, 265 (2010).

    Article  CAS  Google Scholar 

  48. D.B. Williams and C.B. Carter: The Transmission Electron Microscope (Springer US, New York, 1996).

    Book  Google Scholar 

  49. G. Gottstein: Physical Foundations of Materials Science (Springer Science & Business Media, New York, 2013).

    Google Scholar 

  50. G.E. Dieter and D.J. Bacon: Mechanical Metallurgy (McGraw-Hill, New York, 1986).

    Google Scholar 

  51. A. Deschamps, F. Livet, and Y. Brechet: Influence of predeformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties. Acta Mater. 47, 281 (1998).

    Article  Google Scholar 

  52. A. Deschamps and Y. Brechet: Influence of predeformation and ageing of an Al–Zn–Mg alloy—II. Modeling of precipitation kinetics and yield stress. Acta Mater. 47, 293 (1998).

    Article  Google Scholar 

  53. H.R. Shercliff and M.F. Ashby: A process model for age hardening of aluminium alloys—I. The model. Acta Metall. 38, 1789 (1990).

    Article  CAS  Google Scholar 

  54. H.R. Shercliff and M.F. Ashby: A process model for age hardening of aluminium alloys—II. Applications of the model. Acta Metall. 38, 1803 (1990).

    Article  CAS  Google Scholar 

  55. S. Esmaeili and D.J. Lloyd: Modeling of precipitation hardening in pre-aged AlMgSi (Cu) alloys. Acta Mater. 53, 5257 (2005).

    Article  CAS  Google Scholar 

  56. A. Simar, Y. Brechet, B. De Meester, A. Denquin, and T. Pardoen: Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6. Acta Mater. 55, 6133 (2007).

    Article  CAS  Google Scholar 

  57. O. Myhr, Ø. Grong, and S. Andersen: Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Mater. 49, 65 (2001).

    Article  CAS  Google Scholar 

  58. O.R. Myhr, Ø. Grong, H.G. Fjaer, and C.D. Marioara: Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing. Acta Mater. 52, 4997 (2004).

    Article  CAS  Google Scholar 

  59. S. Esmaeili, D.J. Lloyd, and W.J. Poole: Modeling of precipitation hardening for the naturally aged Al–Mg–Si–Cu alloy AA6111. Acta Mater. 51, 3467 (2003).

    Article  CAS  Google Scholar 

  60. F.X. Mao, C. Bollmann, T. Brüggemann, Z.Q. Liang, H.C. Jiang, and V. Mohles: Modelling of the age-hardening behavior in AA6xxx within a through-process modelling framework: In 15th International Conference on Aluminum Alloys, edited by Q. Liu, J.-F. Nie, R. Sanders, Z. Jia, and L. Cao. (Chongqing, China); p. 640.

  61. F. Delmas, M.J. Casanove, P. Lours, A. Couret, and A. Coujou: Quantitative TEM study of the precipitation microstructure in aluminium alloy Al (MgSiCu) 6056 T6. Mater. Sci. Eng., A 373, 80 (2004).

    Article  CAS  Google Scholar 

  62. G. Fribourg, Y. Bréchet, A. Deschamps, and A. Simar: Microstructure-based modelling of isotropic and kinematic strain hardening in a precipitation-hardened aluminium alloy. Acta Mater. 59, 3621 (2011).

    Article  CAS  Google Scholar 

  63. Y. Estrin and K. Lücke: Void nucleation in the wake of a moving grain boundary. Scr. Metall. 19, 221 (1985).

    Article  CAS  Google Scholar 

  64. A. Deschamps, Y. Brechet, C.J. Necker, S. Saimoto, and J.D. Embury: Study of large strain deformation of dilute solid solutions of Al–Cu using channel-die compression. Mater. Sci. Eng., A 207, 143 (1996).

    Article  Google Scholar 

  65. A. Deschamps, M. Niewczas, F. Bley, Y. Brechet, J.D. Embury, L.L. Sinq, F. Livet, and J.P. Simon: Low-temperature dynamic precipitation in a supersaturated AI–Zn–Mg alloy and related strain hardening. Philos. Mag. A 79, 2485 (1999).

    Article  CAS  Google Scholar 

  66. G.W.J. Waldron: A study by transmission electron microscopy of the tensile and fatigue deformation of aluminum–magnesium alloys. Acta Metall. 13, 897 (1965).

    Article  CAS  Google Scholar 

  67. H. Mughrabi: Cyclic slip irreversibilities and the evolution of fatigue damage. Metall. Mater. Trans. B 40, 431 (2009).

    Article  CAS  Google Scholar 

  68. S.E. Harvey, P.G. Marsh, and W.W. Gerberich: Atomic force microscopy and modeling of fatigue crack initiation in metals. Acta Metall. 42, 3493 (1994).

    Article  CAS  Google Scholar 

  69. W.W. Gerberich, S.E. Harvey, D.E. Kramer, and J.W. Hoehn: Low and high cycle fatigue—A continuum supported by AFM observations. Acta Mater. 46, 5007 (1998).

    Article  CAS  Google Scholar 

  70. L. Cretegny and A. Saxena: AFM characterization of the evolution of surface deformation during fatigue in polycrystalline copper. Acta Mater. 49, 3755 (2001).

    Article  CAS  Google Scholar 

  71. A. Shyam and W.W. Milligan: A model for slip irreversibility, and its effect on the fatigue crack propagation threshold in a nickel-base superalloy. Acta Mater. 53, 835 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Haichun Jiang gratefully acknowledges funding by the China Scholarship Council (CSC). The authors gratefully acknowledge the Advanced Metals and Processes Cluster (AMAP) and the participating companies Aleris Rolled Products Germany GmbH, Hydro Aluminum Rolled Products GmbH, Novelis Deutschland GmbH for supplying as cold rolled AA6016 sheet material from the AMAP Project P1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stefanie Sandlöbes or Sandra Korte-Kerzel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Sandlöbes, S., Gottstein, G. et al. On the effect of precipitates on the cyclic deformation behavior of an Al-Mg-Si alloy. Journal of Materials Research 32, 4398–4410 (2017). https://doi.org/10.1557/jmr.2017.350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.350

Navigation