Skip to main content
Log in

Deformation-mechanism dependent stretchability of nanocrystalline gold films on flexible substrates

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Stretchability of polyimide-supported nanocrystalline Au films with a thickness ranging from 930 to 20 nm was evaluated by uniaxial tensile testing. The results show that the fracture strain gradually decreased with decreasing the film thickness. Such degraded stretchability depends on plastic deformation mechanisms associated with the length scales. As the film thickness is larger than 90 nm, local thinning in the grown grains contributed to the high stretchability. Full dislocation behaviors including dislocation pileup in the 930 nm-thick film, the activation of Frank–Read dislocation source in the 170 nm-thick film and the grain boundary dislocation source in the 90 nm-thick film were dominated plastic deformation. As the film thickness is less than 40 nm, low stretchability of thin films resulted from intergranular fracture, and partial dislocation behaviors became prevailed. Evident grain growth happened in the films studied except for the 20 nm-thick film, which is expected to be involved in the stretchability of the nanocrystalline metal films on flexible substrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. Y.S. Rim, S.H. Bae, H. Chen, N. De Marco, and Y. Yang: Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28, 4415 (2016).

    Article  CAS  Google Scholar 

  2. B. Zhu, H. Wang, W.R. Leow, Y. Cai, X.J. Loh, M.Y. Han, and X. Chen: Silk fibroin for flexible electronic devices. Adv. Mater. 28, 4250 (2016).

    Article  CAS  Google Scholar 

  3. P. Heremans, A.K. Tripathi, A. de Jamblinne de Meux, E.C. Smits, B. Hou, G. Pourtois, and G.H. Gelinck: Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications. Adv. Mater. 28, 4266 (2016).

    Article  CAS  Google Scholar 

  4. H.B. Huang and F. Spaepen: Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers. Acta Mater. 48, 3261 (2000).

    Article  CAS  Google Scholar 

  5. B.E. Alaca, M.T.A. Saif, and H. Sehitoglu: On the interface debond at the edge of a thin film on a thick substrate. Acta Mater. 50, 1197 (2002).

    Article  Google Scholar 

  6. D.W. Pashley: A study of the deformation and fracture of single-crystal gold films of high strength inside an electron microscope. Proc. R. Soc. London, Ser. A 255, 218 (1960).

    Article  CAS  Google Scholar 

  7. N. Lu, X. Wang, Z. Suo, and J. Vlassak: Metal films on polymer substrates stretched beyond 50%. Appl. Phys. Lett. 91, 221909 (2007).

    Article  Google Scholar 

  8. N. Lu, Z. Suo, and J.J. Vlassak: The effect of film thickness on the failure strain of polymer-supported metal films. Acta Mater. 58, 1679 (2010).

    Article  CAS  Google Scholar 

  9. G.D. Sim, S. Won, C.Y. Jin, I. Park, S-B. Lee, and J.J. Vlassak: Improving the stretchability of as-deposited Ag coatings on poly-ethylene-terephthalate substrates through use of an acrylic primer. J. Appl. Phys. 109, 073511 (2011).

    Article  Google Scholar 

  10. T. Li, Z.Y. Huang, Z. Suo, S.P. Lacour, and S. Wagner: Stretchability of thin metal films on elastomer substrates. Appl. Phys. Lett. 85, 3435 (2004).

    Article  CAS  Google Scholar 

  11. M. Hommel and O. Kraft: Deformation behavior of thin copper films on deformable substrates. Acta Mater. 49, 3935 (2001).

    Article  CAS  Google Scholar 

  12. S.P. Lacour, S. Wagner, Z. Huang, and Z. Suo: Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404 (2003).

    Article  CAS  Google Scholar 

  13. D.Y.W. Yu: The yield strength of thin copper films on Kapton. J. Appl. Phys. 95, 2991 (2004).

    Article  CAS  Google Scholar 

  14. Y. Xiang, T. Li, Z. Suo, and J.J. Vlassak: High ductility of a metal film adherent on a polymer substrate. Appl. Phys. Lett. 87, 161910 (2005).

    Article  Google Scholar 

  15. R.M. Niu: Thickness dependent critical strain in submicron Cu films adherent to polymer substrate. Appl. Phys. Lett. 90, 161907 (2007).

    Article  Google Scholar 

  16. Y. Arafat, I. Dutta, and R. Panat: Super-stretchable metallic interconnects on polymer with a linear strain of up to 100%. Appl. Phys. Lett. 107, 081906 (2015).

    Article  Google Scholar 

  17. G.D. Sim, S. Won, and S.B. Lee: Tensile and fatigue behaviors of printed Ag thin films on flexible substrates. Appl. Phys. Lett. 101, 191907 (2012).

    Article  Google Scholar 

  18. P.A. Gruber, C. Solenthaler, E. Arzt, and R. Spolenak: Strong single-crystalline Au films tested by a new synchrotron technique. Acta Mater. 56, 1876 (2008).

    Article  CAS  Google Scholar 

  19. S.H. Oh, M. Legros, D. Kiener, P. Gruber, and G. Dehm: In situ TEM straining of single crystal Au films on polyimide: Change of deformation mechanisms at the nanoscale. Acta Mater. 55, 5558 (2007).

    Article  CAS  Google Scholar 

  20. X.M. Luo, X.F. Zhu, and G.P. Zhang: Nanotwin-assisted grain growth in nanocrystalline gold films under cyclic loading. Nat. Commun. 5, 3021 (2014).

    Article  Google Scholar 

  21. N. Lu, X. Wang, Z. Suo, and J. Vlassak: Failure by simultaneous grain growth, strain localization, and interface debonding in metal films on polymer substrates. J. Mater. Res. 24, 379 (2009).

    Article  CAS  Google Scholar 

  22. H.W. Höppel, Z.M. Zhou, H. Mughrabi, and R.Z. Valiev: Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper. Philos. Mag. A 82, 1781 (2002).

    Article  Google Scholar 

  23. X.M. Luo and G.P. Zhang: Grain boundary instability dependent fatigue damage behavior in nanoscale gold films on flexible substrates. Mater. Sci. Eng. A 702, 81 (2017).

    Article  CAS  Google Scholar 

  24. B.J. Kim, H.A.S. Shin, J-H. Lee, T.Y. Yang, T. Haas, P. Gruber, I-S. Choi, O. Kraft, and Y-C. Joo: Effect of film thickness on the stretchability and fatigue resistance of Cu films on polymer substrates. J. Mater. Res. 29, 2827 (2014).

    Article  CAS  Google Scholar 

  25. E. Arzt: Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater. 46, 5611 (1998).

    Article  CAS  Google Scholar 

  26. G.P. Zhang and Z.G. Wang: Fatigue of small-scale metal materials: From micro- to nano-scale. In Multiscale Fatigue Crack Initiation and Propagation of Engineering Materials: Structural Integrity and Microstructural Worthiness, G.C. Sih, ed. (Springer, Dordrecht, the Netherlands, 2008); p. 275.

    Chapter  Google Scholar 

  27. D.S. Gianola, S. Van Petegem, M. Legros, S. Brandstetter, H. Van Swygenhoven, and K.J. Hemker: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 (2006).

    Article  CAS  Google Scholar 

  28. G.J. Fan, L.F. Fu, Y.D. Wang, Y. Ren, H. Choo, P.K. Liaw, G.Y. Wang, and N.D. Browning: Uniaxial tensile plastic deformation of a bulk nanocrystalline alloy studied by a high-energy X-ray diffraction technique. Appl. Phys. Lett. 89, 101918 (2006).

    Article  Google Scholar 

  29. G. Dehm, M. Legros, and B. Heiland: In situ TEM straining experiments of Al films on polyimide using a novel FIB design for specimen preparation. J. Mater. Sci. 41, 4484 (2006).

    Article  CAS  Google Scholar 

  30. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  31. L.E. Murr and S.H. Wang: Grain boundary deformation: The role of grain boundaries in yielding of polycrystalline metals and alloys. Res Mech. Lett. 1, 85 (1981).

    CAS  Google Scholar 

  32. C.W. Price and J.P. Hirth: A mechanism for the generation of screw dislocations from grain-boundary ledges. Mater. Sci. Eng. 9, 15 (1972).

    Article  CAS  Google Scholar 

  33. G.P. Zhang, C.A. Volkert, R. Schwaiger, P. Wellner, E. Arzt, and O. Kraft: Length-scale-controlled fatigue mechanisms in thin copper films. Acta Mater. 54, 3127 (2006).

    Article  CAS  Google Scholar 

  34. C.V. Thompson: The yield stress of polycrystalline thin films. J. Mater. Res. 8, 237 (1993).

    Article  Google Scholar 

  35. Y.T. Zhu, X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, M.I. Baskes, F. Zhou, and E.J. Lavernia: Nucleation and growth of deformation twins in nanocrystalline aluminum. Appl. Phys. Lett. 85, 5049 (2004).

    Article  CAS  Google Scholar 

  36. Y.T. Zhu, X.Z. Liao, S.G. Srinivasan, and E.J. Lavernia: Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation. J. Appl. Phys. 98, 034319 (2005).

    Article  Google Scholar 

  37. Y.T. Zhu, X.Z. Liao, and X.L. Wu: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).

    Article  CAS  Google Scholar 

  38. B. Zhang, T.Y. Xiao, X.M. Luo, X.F. Zhu, and G.P. Zhang: Enhancing fatigue cracking resistance of nanocrystalline Cu films on a flexible substrate. Mater. Sci. Eng., A 627, 61 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 51601198 and 51571199) and partially supported by the NSFC (Grant No. 51371180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, XM., Zhang, GP. Deformation-mechanism dependent stretchability of nanocrystalline gold films on flexible substrates. Journal of Materials Research 32, 3516–3523 (2017). https://doi.org/10.1557/jmr.2017.349

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.349

Navigation