Skip to main content
Log in

Isothermal and thermo-mechanical fatigue behavior of 16Mo3 steel coated with high-velocity oxy-fuel sprayed nickel-base alloy under uniaxial as well as biaxial-planar loading

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The ferritic steel 16Mo3 coated with the nickel-base alloy IN625mod by high-velocity oxy-fuel (HVOF) spraying was investigated under uniaxial and biaxial fatigue loading at 200 and 500 °C. Furthermore, bulk HVOF-sprayed specimens of the coating material IN625mod were also investigated under uniaxial isothermal fatigue loading at 200 and 500 °C. Moreover, the thermo-mechanical fatigue behavior of 16Mo3 was studied under in-phase (IP) and out-of-phase (OP) loading between 200 and 500 °C. The fatigue lives of the bulk coating and the compound material are presented. In particular, the thermo-mechanical OP loading leads to a strong reduction of the lifetimes compared to the IP loading. A conservative estimation of the fatigue lives of the thermo-mechanical loading can be given by isothermal tests at 500 °C. The comparison of the uniaxial loading with the biaxial loading cases shows reasonable coincidence by using the distortion energy hypothesis according to von Mises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. E. Huttunen-Saarivirta, M. Antonov, R. Veinthal, J. Tuiremo, K. Mkel, and P. Siitonen: Influence of particle impact conditions and temperature on erosionoxidation of steels at elevated temperatures. Wear 272 (1), 159–175 (2011).

    Article  CAS  Google Scholar 

  2. F. Ciofu, A. Nioaţă, N. Mihuţ, and C. Rădulescu: The influence of some corrosive environments on the working equipment of the heat exchangers. Fiability & Durability/Fiabilitate si Durabilitate, 1, 46–50 (2014).

    Google Scholar 

  3. M. Rozmus-Górnikowska, M. Blicharski, J. Kusińsk, L. Kuslnski, and M. Marszyck: Influence of boiler pipe cladding techniques on their microstructure and properties. Arch. Metall. Mater. 58 (4), 1093–1096 (2013).

    Article  CAS  Google Scholar 

  4. M. Rozmus-Górnikowska, Ł. Cieniek, M. Blicharski, and J. Kusiński: Microstructure and microsegregation of an Inconel 625 weld overlay produced on steel pipes by the cold metal transfer technique. Arch. Metall. Mater. 59 (3), 1081–1084 (2014).

    Article  CAS  Google Scholar 

  5. S. Bulatovic, V. Aleksic, and L. Milovic: Failure of steam line causes determined by NDT testing in power and heating plants. Fract. Struct. Integr. 26, 41–48 (2013).

    Google Scholar 

  6. P. Jauhiainen, S. Yli-Olli, A. Nyholm, P. Auerkari, J. Salonen, O. Lehtinen, and S. Mäkinen: Impact of oxidation on creep life of superheaters and reheaters. In Proceedings of the International ECCC Creep Conference, T.A. Shibli and S.R. Holdsworth, eds. (2009); pp. 320–328.

    Google Scholar 

  7. P.P. Psyllaki, G. Pantazopoulos, and H. Lefakis: Metallurgical evaluation of creep-failed superheater tubes. Eng. Failure Anal. 16 (5), 1420–1431 (2009).

    Article  CAS  Google Scholar 

  8. H. Ergün, K. Aydinol, T. Öztürk, and M. Doruk: Design of a high temperature erosion apparatus for testing of boiler tubes. Turk. J. Eng. Environ. Sci. 37 (2), 178–185 (2013).

    Google Scholar 

  9. M. Kriegel, O. Fabrichnaya, and H.J. Seifert: Thermodynamische Simulation für Werkstoffe zum Schutz gegen die Dampferzeugerkorrosion. In Dampferzeugerkorrosion, A. Eisenblätter, R. Starke, and T. Zanler, eds. (Saxonia, Freidburg, Germany, 2009); pp. 189–200.

    Google Scholar 

  10. C.W. Lawton: High-temperature low-cycle fatigue: A summary of industry and code work. Exp. Mech. 8 (6), 257–266 (1968).

    Article  Google Scholar 

  11. H. Mayer, H.L. Stark, and S. Ambrose: Review of fatigue design procedures for pressure vessels. Int. J. Pressure Vessels Piping 77 (13), 775–781 (2000).

    Article  Google Scholar 

  12. F. Ellyin and J.D. Wolodko: Testing facilities for multiaxial loading of tubular specimens. ASTM Spec. Tech. Publ. 1280, 7–24 (1997).

    Google Scholar 

  13. L. Bocher, P. Delobelle, P. Robinet, and X. Feaugas: Mechanical and microstructural investigations of an austenitic stainless steel under non-proportional loadings in tension–torsion-internal and external pressure. Int. J. Plast. 17 (11), 1491–1530 (2001).

    Article  CAS  Google Scholar 

  14. T. Itoh and Z. Bao: Low cycle fatigue lives under multiaxial non-proportional loading. In Seventh International Conference on Low Cycle Fatigue, T. Beck and E. Charkaluk, eds. (DVM, Berlin, Germany, 2013); pp. 247–252.

    Google Scholar 

  15. V. Bonnand, J.L. Chaboche, P. Gomez, P. Kanouté, and D. Pacou: Investigation of multiaxial fatigue in the context of turboengine disc applications. Int. J. Fatigue 33 (8), 1006–1016 (2011).

    Article  CAS  Google Scholar 

  16. D. Zhang, S.J. Harris, and D.G. McCartney: Microstructure formation and corrosion behaviour in HVOF-sprayed Inconel 625 coatings. Mater. Sci. Eng., A 344 (12), 45–56 (2003).

    Article  Google Scholar 

  17. A.A. Boudi, M.S.J. Hashmi, and B.S. Yilbas: HVOF coating of Inconel 625 onto stainless and carbon steel surfaces: Corrosion and bond testing. J. Mater. Process. Technol. 155–156, 2051–2055 (2004). Proceedings of the International Conference on Advances in Materials and Processing Technologies: Part 2.

    Article  CAS  Google Scholar 

  18. H.Y. Al-Fadhli, J. Stokes, M.S.J. Hashmi, and B.S. Yilbas: HVOF coating of welded surfaces: Fatigue and corrosion behaviour of stainless steel coated with Inconel-625 alloy. Surf. Coat. Technol. 200 (16–17), 4904–4908 (2006).

    Article  CAS  Google Scholar 

  19. H.Y. Al-Fadhli, J. Stokes, M.S.J. Hashmi, and B.S. Yilbas: The erosion corrosion behaviour of high velocity oxy-fuel (HVOF) thermally sprayed Inconel-625 coatings on different metallic surfaces. Surf. Coat. Technol. 200 (20–21), 5782–5788 (2006).

    Article  CAS  Google Scholar 

  20. N. Ahmed, M.S. Bakare, D.G. McCartney, and K.T. Voisey: The effects of microstructural features on the performance gap in corrosion resistance between bulk and HVOF sprayed Inconel 625. Surf. Coat. Technol. 204 (14), 2294–2301 (2010).

    Article  CAS  Google Scholar 

  21. A.A. Boudi, M.S.J. Hashmi, and B.S. Yilbas: ESEM evaluation of Inconel-625 thermal spray coating (HVOF) onto stainless steel and carbon steel post brine exposure after tensile tests. J. Mater. Process. Technol. 173 (1), 44–52 (2006).

    Article  CAS  Google Scholar 

  22. R.G. Bonora, H.J.C. Voorwald, M.O.H. Cioffi, G.S. Junior, and L.F.V. Santos: Fatigue in AISI 4340 steel thermal spray coating by HVOF for aeronautic application. Procedia Eng. 2 (1), 1617–1623 (2010).

    Article  Google Scholar 

  23. E.S. Puchi Cabrera, J.A. Berrios-Ortiz, J. Da-Silva, and J. Nunes: Fatigue behavior of a 4140 steel coated with a Colmonoy 88 alloy applied by HVOF. Surf. Coat. Technol. 172 (23), 128–138 (2003).

    Article  CAS  Google Scholar 

  24. E.S. Puchi-Cabrera, M.H. Staia, J. Lesage, D. Chicot, J.G. La Barbera-Sosa, and E.A. Ochoa-Prez: Fatigue performance of a SAE 1045 steel coated with a Colmonoy 88 alloy deposited by HVOF thermal spraying. Surf. Coat. Technol. 201 (5), 2038–2045 (2006).

    Article  CAS  Google Scholar 

  25. E.S. Puchi-Cabrera, M.H. Staia, M.J. Ortiz-Mancilla, J.G. La Barbera-Sosa, E.A. Ochoa Prez, C. Villalobos-Gutirrez, S. Bellayer, M. Traisnel, D. Chicot, and J. Lesage: Fatigue behavior of a SAE 1045 steel coated with Colmonoy 88 alloy deposited by HVOF thermal spray. Surf. Coat. Technol. 205 (4), 1119–1126 (2010). Proceedings of the fourth workshop RIPT (Les Rencontres Internationales sur la Projection Thermique) and the third workshop on Suspension and Solution Thermal Spraying (S2TS).

    Article  CAS  Google Scholar 

  26. K. Padilla, A. Velsquez, J.A. Berrios, and E.S. Puchi Cabrera: Fatigue behavior of a 4140 steel coated with a NiMoAl deposit applied by HVOF thermal spray. Surf. Coat. Technol. 150 (2–3), 151–162 (2002).

    Article  CAS  Google Scholar 

  27. R.C. Souza, H.J.C. Voorwald, and M.O.H. Cioffi: Fatigue strength of HVOF sprayed Cr3C2–25NiCr and WC–10Ni on AISI 4340 steel. Surf. Coat. Technol. 203 (3–4), 191–198 (2008).

    Article  CAS  Google Scholar 

  28. R. Kowalewski and H. Mughrabi: Influence of a plasma-sprayed NiCrAlY coating on the low-cycle fatigue behaviour of a directionally solidified nickel-base superalloy. Mater. Sci. Eng., A 247 (1–2), 295–299 (1998).

    Article  Google Scholar 

  29. F. Grube, E.E. Affeldt, and H. Mughrabi: Thermomechanical fatigue behavior of an aluminide-coated monocrystalline Ni-base superalloy. In Thermomechanical Fatigue Behavior of Materials, Vol. 4 (ASTM International, 2003); pp. 164–179.

    Chapter  Google Scholar 

  30. Y.C. Zhou and T. Hashida: Thermal fatigue failure induced by delamination in thermal barrier coating. Int. J. Fatigue 24 (2–4), 407–417 (2002).

    Article  CAS  Google Scholar 

  31. Z.B. Chen, Z.W. Huang, Z.G. Wang, and S.J. Zhu: Failure behavior of coated nickel-based superalloy under thermomechanical fatigue. J. Mater. Sci. 44 (23), 6251–6257 (2009).

    Article  CAS  Google Scholar 

  32. Z.B. Chen, Z.G. Wang, and S.J. Zhu: Thermomechanical fatigue behavior of an air plasma sprayed thermal barrier coating system. Mater. Sci. Eng., A 528 (29–30), 8396–8401 (2011).

    Article  CAS  Google Scholar 

  33. C. Giolli, A. Scrivani, G. Rizzi, F. Borgioli, G. Bolelli, and L. Lusvarghi: Failure mechanism for thermal fatigue of thermal barrier coating systems. J. Therm. Spray Technol. 18 (2), 223–230 (2009).

    Article  CAS  Google Scholar 

  34. T. Sadowski and P. Golewski: Cracks path growth in turbine blades with TBC under thermo-mechanical cyclic loadings. Fract. Integr. Struct. 35, 492–499 (2016).

    Google Scholar 

  35. S. Stekovic: Low cycle fatigue and thermo-mechanical fatigue of uncoated and coated nickel-base superalloys. Ph.D. thesis, Institutionen för ekonomisk och industriell utveckling, 2007.

    Google Scholar 

  36. H. Brodin, M. Jinnestrand, S. Johansson, and S. Sjöström: Thermal Barrier Coating Fatigue Life Assessment; Technical Report; Siemens AG, 2006.

    Google Scholar 

  37. R. Nützel, E. Affeldt, and M. Göken: Damage evolution during thermo-mechanical fatigue of a coated monocrystalline nickel-base superalloy. Int. J. Fatigue 30 (2), 313–317 (2008).

    Article  CAS  Google Scholar 

  38. E. Fleury and J.S. Ha: Thermomechanical fatigue behaviour of nickel base superalloy IN738LC part 2—Lifetime prediction. Mater. Sci. Technol. 17 (9), 1087–1092 (2001).

    Article  CAS  Google Scholar 

  39. Z.W. Huang, Z.G. Wang, S.J. Zhu, F.H. Yuan, and F.G. Wang: Effect of HVOF sprayed MCrAlY coating on thermomechanical and isothermal fatigue life of superalloy M963. In Key Engineering Materials, Vol. 373 (Trans Tech Publications, 2008); pp. 23–26.

    Google Scholar 

  40. M. Okazaki: High-temperature strength of Ni-base superalloy coatings. Sci. Technol. Adv. Mater. 2 (2), 357–366 (2001).

    Article  CAS  Google Scholar 

  41. M. Hoffmann and H. Biermann: Static and cyclic deformation behavior of the ferritic steel 16Mo3 under monotonic and cyclic loading at high temperatures. Steel Res. Int. 83 (7), 631–636 (2012).

    Article  CAS  Google Scholar 

  42. D. Kulawinski, M. Hoffmann, T. Lippmann, G. Lamprecht, S. Henkel, and H. Biermann: Fatigue behavior of 16Mo3 at elevated temperatures under uniaxial as well as biaxial-planar loading. Fatigue Fract. Eng. Mater. Struct. (2016).

    Google Scholar 

  43. S. Soltysiak, M. Selent, S. Roth, M. Abendroth, M. Hoffmann, H. Biermann, and M. Kuna: High-temperature small punch test for mechanical characterization of a nickel-base super alloy. Mater. Sci. Eng., A 614, 259–263 (2014).

    Article  CAS  Google Scholar 

  44. M. Selent, S. Soltysiak, S. Roth, M. Abendroth, M. Hoffmann, and M. Kuna: Mechanical characterisation of a thermally sprayed nickel-base superalloy by means of the high temperature small punch test. In 3rd International Conference SSTT (Small Sample Test Techniques) (2014); pp. 98–111.

    Google Scholar 

  45. H.C.M. Andersson and E. Sjöström: Thermal gradients in round tmf specimens. Int. J. Fatigue 30 (2), 391–396 (2008).

    Article  CAS  Google Scholar 

  46. T. Beck, P. Hähner, H-J. Kühn, C. Rae, E.E. Affeldt, H. Andersson, A. Köster, and M. Marchionni: Thermo-mechanical fatigue—The route to standardisation (“TMF-standard” project). Mater. Corros. 57 (1), 53–59 (2006).

    Article  CAS  Google Scholar 

  47. P. Hähner, E. Affeldt, T. Beck, H. Klingelhöffer, M. Loveday, and C. Rinaldi: Validated Code-of-Practice for Strain-Controlled Thermo-Mechanical Fatigue Testing; EC-Report EUR 22281 EN (2006).

    Google Scholar 

  48. P. Hähner, C. Rinaldi, V. Bicego, E. Affeldt, T. Brendel, H. Andersson, T. Beck, H. Klingelhöffer, H.J. Kühn, A. Köster, M. Loveday, M. Marchionni, and C. Rae: Research and development into a european code-of-practice for strain-controlled thermo-mechanical fatigue testing. Int. J. Fatigue 30 (2), 372–381 (2008).

    Article  CAS  Google Scholar 

  49. D. Kulawinski, A. Weidner, S. Henkel, and H. Biermann: Isothermal and thermo-mechanical fatigue behavior of the nickel base superalloy waspaloy under uniaxial and biaxial-planar loading. Int. J. Fatigue 81, 21–36 (2015).

    Article  CAS  Google Scholar 

  50. D. Kulawinski, S. Henkel, D. Holländer, M. Thiele, U. Gampe, and H. Biermann: Fatigue behavior of the nickel-base superalloy Waspaloy under proportional biaxial-planar loading at high temperature. Int. J. Fatigue 67, 212–219 (2014).

    Article  CAS  Google Scholar 

  51. K. Pascoe and J. Villiers: Low cycle fatigue of steels under biaxial straining. J. Strain Anal. Eng. 2 (2), 117–126 (1967).

    Article  Google Scholar 

  52. D. Kulawinski, K. Nagel, S. Henkel, P. Hübner, H. Fischer, M. Kuna, and H. Biermann: Characterization of stress–strain behavior of a cast TRIP steel under different biaxial planar load ratios. Eng. Fract. Mech. 78 (8), 1684–1695 (2011).

    Article  Google Scholar 

  53. D. Kulawinski, S. Ackermann, A. Seupel, T. Lippmann, S. Henkel, M. Kuna, A. Weidner, and H. Biermann: Deformation and strain hardening behavior of powder metallurgical TRIP steel under quasi-static biaxial-planar loading. Mater. Sci. Eng., A 642, 317–329 (2015).

    Article  CAS  Google Scholar 

  54. D. Kulawinski, S. Ackermann, A. Glage, S. Henkel, and H. Biermann: Biaxial low cycle fatigue behavior and martensite formation of a metastable austenitic cast TRIP steel under proportional loading. Steel Res. Int. 82 (9), 1141–1148 (2011).

    Article  CAS  Google Scholar 

  55. D. Kulawinski: Biaxial-planare isotherme und thermo-mechanische Ermüdung an polykristallinen Nickelbasis-Superlegierungen. Ph.D. thesis, TU Bergakademie Freiberg, Berlin, Germany, 2015.

    Google Scholar 

  56. J.A. Bannantine, J.J. Comer, and J.L. Handrock: Fundamentals of Metal Fatigue Analysis (Prentice Hall, Uppder Saddle River, New Jersey, 1989).

    Google Scholar 

  57. C.M. Sonsino and V. Grubisic: Kurzzeitschwingfestigkeit von duktilen Stählen unter mehrachsiger Beanspruchung. Materialwiss. Werkstofftech. 15, 378–386 (1984).

    Article  Google Scholar 

  58. P. Mukherjee, A. Sarkar, P. Barat, T. Jayakumar, S. Mahadevan, and S.K. Rai: Lattice misfit measurement in Inconel 625 by X-ray diffraction technique. arXiv preprint cond-mat/0604222 (2006).

  59. K. Kusabiraki, H. Komatsu, and S. Ikeuchi: Lattice constants and compositions of the metastable Ni3Nb phase precipitated in a Ni–15Cr–8Fe–6Nb alloy. Metall. Mater. Trans. A 29 (4), 1169–1174 (1998).

    Article  Google Scholar 

  60. B. Reppich: Negatives kriechen. Z. Metallkd. 75, 193–202 (1984).

    CAS  Google Scholar 

  61. D.J. Wilson and A. Ferrari: Time-dependent Edge Notch Sensitivity of Oxide and Gamma Prime Dispersion Strengthened Sheet Materials at 1000° to 1800 °F (538–982 °C); Technical Report; The University of Michigan, 1972.

    Google Scholar 

  62. M.W. Brown and K.J. Miller: High temperature low cycle biaxial fatigue of two steels. Fatigue Fract. Eng. Mater. Struct. 1 (2), 217–229 (1979).

    Article  CAS  Google Scholar 

  63. T. Itoh, M. Sakane, and M. Ohnami: High temperature multiaxial low cycle fatigue of cruciform specimen. J. Eng. Mater. Technol. 116, 90–98 (1994).

    Article  CAS  Google Scholar 

  64. P. Wang, L. Cui, M. Lyschik, A. Scholz, C. Berger, and M. Oechsner: A local extrapolation based calculation reduction method for the application of constitutive material models for creep fatigue assessment. Int. J. Fatigue 44, 253–259 (2012).

    Article  CAS  Google Scholar 

  65. P. Wang, L. Cui, A. Scholz, S. Linn, and M. Oechsner: Multiaxial thermomechanical creep-fatigue analysis of heat-resistant steels with varying chromium contents. Int. J. Fatigue 67, 220–227 (2014).

    Article  CAS  Google Scholar 

  66. T. Łagoda, E. Macha, and M. Sakane: Estimation of high temperature fatigue lifetime of SUS304 steel with an energy parameter in the critical plane. J. Theor. Appl. Mech. 41, 55–73 (2003).

    Google Scholar 

  67. M. Sakane, M. Ohnami, T. Kuno, and T. Itsumura: High temperature biaxial low cycle fatigue using cruciform specimen. J. Soc. Mater. Sci., Jpn. 37 (414), 340–346 (1987).

    Article  Google Scholar 

  68. T. Ogata and Y. Takahashi: Development of a high-temperature biaxial fatigue testing machine using a cruciform specimen. In Multiaxial Fatigue and Fracture Fifth International Conference on Biaxial/Multiaxial Fatigue and Fracture, W. Bedkowski, E. Macha, and T. Łagoda, eds.; European Structural Integrity Society, Vol. 25 (Elsevier, 1999); pp. 101–114.

    Chapter  Google Scholar 

  69. T. Ogata: Biaxial thermomechanical-fatigue life property of a directionally solidified Ni-base superalloy. J. Eng. Gas Turbines Power 130 (6), 062101 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the financial support of the European Union (European Fund for Regional Development) and the Free State of Saxony within Saxon Excellence Initiative ADDE (ADDE under funding grant in the subproject TP 15 No. 13852/2337). A special thank goes to Professor M. Sakane, Ritsumeikan University, Kyoto, Japan, for the helpful remarks as well as the discussion. Furthermore, we want to thank Dipl.-Ing. R. Kolmorgen for experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Kulawinski.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulawinski, D., Hoffmann, M., Lippmann, T. et al. Isothermal and thermo-mechanical fatigue behavior of 16Mo3 steel coated with high-velocity oxy-fuel sprayed nickel-base alloy under uniaxial as well as biaxial-planar loading. Journal of Materials Research 32, 4411–4423 (2017). https://doi.org/10.1557/jmr.2017.344

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.344

Navigation