Skip to main content
Log in

Transmission electron microscopy study of the microstructural evolution during high-temperature and low-stress (011) \(\left[{01\bar 1} \right]\) shear creep deformation of the superalloy single crystal LEK 94

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present work describes the shear creep behavior of the superalloy LEK 94 at temperatures between 980 and 1050 °C and shear stresses between 50 and 140 MPa for loading on the macroscopic crystallographic shear system (MCSS) (011)\(\left[{01\bar 1} \right]\). The strain rate versus strain curves show short primary and extended secondary creep regimes. We find an apparent activation energy for creep of Qapp = 466 kJ/mol and a Norton-law stress exponent of n = 6. With scanning transmission electron microscopy, we characterize three material states that differ in temperature, applied stress, and accumulated strain/time. Rafting develops perpendicular to the maximum principal stress direction, γ channels fill with dislocations, superdislocations cut γ′ particles, and dislocation networks form at γ/γ′ interfaces. Our findings are in agreement with previous results for high-temperature and low-stress [001] and [110] tensile creep testing, and for shear creep testing of the superalloys CMSX-4 and CMSX-6 on the MCSSs (111)\(\left[{01\bar 1} \right]\) and (001)[100]. The parameters that characterize the evolving γ/γ′ microstructure and the evolving dislocation substructures depend on creep temperature, stress, strain, and time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. G.W. Meetham: The Development of Gas Turbine Materials (Applied Science Publishers, London, England, 1981); pp. 89–119.

    Book  Google Scholar 

  2. M. McLean: Directionally Solidified Materials for High Temperature Service (The Metals Society, London, England, 1983); pp. 5–8.

    Google Scholar 

  3. C.T. Sims: A history of superalloy metallurgy for superalloy metallurgists. In Superalloys 1984, M. Gell, ed. (Metallurgical Society AIME Proceedings, Champion, PA, 1984); p. 399.

    Google Scholar 

  4. M. Durand-Charre: The Microstructure of Superalloys (Gordon & Breach, London, England, 2003); pp. 6, 57, 92.

    Google Scholar 

  5. R.C. Reed: The Superalloys—Fundamentals and Applications (Cambridge University Press, Cambridge, England, 2006); pp. 4, 16, 19, 121.

    Book  Google Scholar 

  6. R. Bürgel, H.J. Maier, and T. Niendorf: Handbuch Hochtemperatur-Werkstofftechnik, 4th ed. (Vieweg and Teubner, Wiesbaden, Germany, 2011); pp. 107–114.

    Book  Google Scholar 

  7. F. Garofalo: Fundamentals of Creep and Creep-Rupture in Metals (Macmillan, New York, USA, 1965); pp. 46–101.

    Google Scholar 

  8. B. Ilschner: Hochtemperatur-Plastizität (Springer, Berlin, Germany, 1973); pp. 26–30.

    Book  Google Scholar 

  9. R.W. Evans and B. Wilshire: Creep of Metals and Alloys (Institute of Materials, London, England, 1985); pp. 10–14.

    Google Scholar 

  10. J. Cadek: Creep in Metallic Materials (Elsevier, Amsterdam, Netherlands, 1988); pp. 44–64.

    Google Scholar 

  11. F.R.N. Nabarro and H.L. de Villiers: The Physics of Creep (Taylor and Francis, London, England, 1995); pp. 25–34.

    Google Scholar 

  12. M.E. Kassner: Fundamentals of Creep in Metals and Alloys (Elsevier, Amsterdam, Netherlands, 2009); pp. 15, 21, 74.

    Google Scholar 

  13. T.M. Pollock and A.S. Argon: Creep resistance of CMSX-3 nickel-base superalloy single-crystals. Acta Metall. Mater. 40, 1 (1992).

    Article  CAS  Google Scholar 

  14. R.R. Keller, H.J. Maier, and H. Mughrabi: Characterization of interfacial dislocation networks in a creep-deformed nickel-base superalloy. Scr. Metall. Mater. 28, 23 (1993).

    Article  CAS  Google Scholar 

  15. N. Matan, D.C. Cox, C.M.F. Rae, and R.C. Reed: On the kinetics of rafting in CMSX-4 superalloy single crystals. Acta Mater. 47, 2031 (1999).

    Article  CAS  Google Scholar 

  16. M.V. Acharya and G.E. Fuchs: The effect of long-term thermal exposures on the microstructure and properties of CMSX-10 single crystal Ni-base superalloys. Mater. Sci. Eng., A 381, 143 (2004).

    Article  CAS  Google Scholar 

  17. P. Caron, C. Ramusat, and F. Diologent: Influence of the γ0 fraction on the γ/γ′ topological inversion during high temperature creep of single crystal superalloys. In Superalloys 2008, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard, eds. (The Minerals, Metals and Materials Society, Champion, USA, 2008); p. 159.

    Google Scholar 

  18. L. Dirand, J. Cormier, A. Jacques, J-P. Chateau-Cornu, T. Schenk, O. Ferry, and P. Bastie: Measurement of the effective γ/γ′ lattice mismatch during high temperature creep of Ni-based single crystal superalloy. Mater. Charact. 77, 32 (2013).

    Article  CAS  Google Scholar 

  19. J.P. Bardet: Experimental Soil Mechanics (Prentice Hall, London, England, 1997); pp. 430–443.

    Google Scholar 

  20. P.M. Anderson, J.P. Hirth, and J. Lothe: Theory of Dislocations, 3nd ed. (Cambridge University Press, Cambridge, England, 2016); p. 637.

    Google Scholar 

  21. G.E. Dieter: Mechanical Metallurgy, 3rd ed. (McGraw-Hill, London, England, 1988); pp. 15, 41, 77, 79, 139.

    Google Scholar 

  22. C. Mayr, G. Eggeler, and A. Dlouhy: Double shear creep deformation of superalloy single crystals. In Strength of Materials: Fundamental Physical Aspects of the Strength of Crystalline Materials ICSMA10, H. Oikawa, K. Maruyama, S. Takeuchi, and M. Yamaguchi, eds. (Japan Institute of Metals Proceedings, Sendai, Japan, 1994); p. 709.

    Google Scholar 

  23. C. Mayr, G. Eggeler, G.A. Webster, and G. Peter: Double shear creep testing of superalloy single crystals at temperatures above 1000 °C. Mater. Sci. Eng., A 199, 121 (1995).

    Article  Google Scholar 

  24. G. Peter, M. Probst-Hein, M. Kolbe, K. Neuking, and G. Eggeler: Finite element stress and strain analysis of a double shear creep specimen. Materialwiss. Werkstofftech. 28, 457 (1997).

    Article  CAS  Google Scholar 

  25. C. Mayr, G. Eggeler, and A. Dlouhy: Analysis of dislocation structures after double shear creep deformation of CMSX6-superalloy single crystals at temperatures above 1000 °C. Mater. Sci. Eng., A 207, 51 (1996).

    Article  Google Scholar 

  26. M. Kolbe, A. Dlouhy, and G. Eggeler: Dislocation reactions at γ/γ′-interfaces during shear creep deformation in the macroscopic crystallographic shear system (001)[110] of CMSX6 superalloy single crystals at 1025 °C. Mater. Sci. Eng., A 246, 133 (1998).

    Article  Google Scholar 

  27. G. Eggeler and A. Dlouhy: On the formation of 〈010〉-dislocations in the γ′-phase of superalloy single crystals during high temperature low stress creep. Acta Mater. 45, 4251 (1997).

    Article  CAS  Google Scholar 

  28. M. Kamaraj, C. Mayr, M. Kolbe, and G. Eggeler: On the influence of stress state on rafting in the single crystal superalloy CMSX-6 under conditions of high temperature and low stress creep. Scr. Mater. 38, 589 (1998).

    Article  CAS  Google Scholar 

  29. K. Serin, G. Göbenli, and G. Eggeler: On the influence of stress state, stress level and temperature on γ-channel widening in the single crystal superalloy CMSX-4. Mater. Sci. Eng., A 387–389, 133 (2004).

    Article  CAS  Google Scholar 

  30. M. Kamaraj, K. Serin, M. Kolbe, K. Neuking, and G. Eggeler: Shear creep deformation of the super alloy single crystal CMSX-4 at high temperatures and low stresses. Materialwiss. Werkstofftech. 34, 469 (2003).

    Article  CAS  Google Scholar 

  31. U. Glatzel, T. Mack, S. Wöllmer, and J. Wortmann: Nickel base alloy for casting single crystal components. European Patent No. EP 1 223 229 B1, 2006.

  32. S. Wöllmer, T. Mack, and U. Glatzel: Influence of tungsten and rhenium concentration on creep properties of a second generation superalloy. Mater. Sci. Eng., A 319–321, 792 (2001).

    Article  Google Scholar 

  33. G. Mälzer, R.W. Hayes, T. Mack, and G. Eggeler: Miniature specimen assessment of creep of the single-crystal superalloy LEK 94 in the 1000 °C temperature range. Metall. Mater. Trans. A 38, 314 (2007).

    Article  CAS  Google Scholar 

  34. P. Nörtershäuser, J. Frenzel, A. Ludwig, K. Neuking, and G. Eggeler: The effect of cast microstructure and crystallography on rafting, dislocation plasticity and creep anisotropy of single crystal Ni-base superalloys. Mater. Sci. Eng., A 626, 305 (2015).

    Article  CAS  Google Scholar 

  35. L. Agudo Jácome, G. Eggeler, and A. Dlouhý: Advanced scanning transmission stereo electron microscopy of structural and functional engineering materials. Ultramicroscopy 122, 48 (2012).

    Article  CAS  Google Scholar 

  36. L. Agudo Jácome, P. Nörtershäuser, J.K. Heyer, A. Lahni, J. Frenzel, A. Dlouhý, C. Somsen, and G. Eggeler: High-temperature and low-stress creep anisotropy of single-crystal superalloys. Acta Mater. 61, 2926 (2013).

    Article  CAS  Google Scholar 

  37. L. Agudo Jácome, P. Nörtershäuser, C. Somsen, A. Dlouhý, and G. Eggeler: On the nature of γ′ phase cutting and its effect on high temperature and low stress creep anisotropy of Ni-base single crystal superalloys. Acta Mater. 69, 246 (2014).

    Article  CAS  Google Scholar 

  38. K. Serin: Werkstoffwissenschaftliche Untersuchungen zum mechanischen Verhalten und zur Gefügestabilität der einkristallinen Superlegierung CMSX-4. Dr.-Ing. thesis, Ruhr-Universität Bochum, Germany, 2002, p. 104.

    Google Scholar 

  39. G. Göbenli: Werkstoffwissenschaftliche Untersuchungen zum ein- und mehrachsigen Kriechverhalten der Nickelbasis-Superlegierungen CMSX-4 und LEK 94 oberhalb 1000 °C. Dr.-Ing. thesis, Ruhr-Universität Bochum, 2005, p. 101.

  40. K. Serin, R.D. Neuser, G. Eggeler, M. Kamaraj, M. Kolbe, and M. Heitmaier: Eine quantitative metallographische Studie zur Floßbildung und zur Kanalverbreiterung beim Kriechen einkristalliner Superlegierungen. Prakt. Metallogr. 38, 680 (2001).

    CAS  Google Scholar 

  41. F.R. Larson and J. Miller: A time-temperature relationship for rupture and creep stresses. Trans. ASME 74, 765 (1952).

    Google Scholar 

  42. A. Epishin, T. Link, P.D. Portella, and U. Brückner: Evolution of the γ/γ′ microstructure during high-temperature creep of a nickel-base superalloy. Acta Mater. 48, 4169 (2000).

    Article  CAS  Google Scholar 

  43. P. Wollgramm, D. Bürger, A.B. Parsa, K. Neuking, and G. Eggeler: The effect of stress, temperature and loading direction on the creep behavior of Ni-base single crystal superalloy miniature creep specimens. Mater. High Temp. 33, 346 (2016).

    Article  CAS  Google Scholar 

  44. P. Wollgram, H. Buck, K. Neuking, A.B. Parsa, S. Schuwalow, J. Rogal, R. Drautz, and G. Eggeler: On the role of Re in the stress and temperature dependence of creep of Ni-base single crystal superalloys. Mater. Sci. Eng., A 628, 382 (2015).

    Article  CAS  Google Scholar 

  45. G. Eggeler and W. Blum: Coarsening of dislocation structure after stress reduction during creep of NaCl single crystals. Philos. Mag. A 44, 12065 (1981).

    Article  Google Scholar 

  46. W. Blum: High temperature deformation and creep of crystalline solids. In Plastic Deformation and Fracture of Materials, H. Mughrabi, ed. (Wiley VCH, Weinheim, Germany, 1993); pp. 359–405.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors dedicate this work to Haël Mughrabi on the occasion of his 80th birthday. LAJ acknowledges funding by the German Research Foundation (DFG) through the research grant AG 191/1-1 and by the Adolf Martens Fellowship Programme of the BAM Berlin. GE acknowledges funding by the DFG through projects A1 and A2 of the collaborative research center SFB/TR 103.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Agudo Jácome.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agudo Jácome, L., Göbenli, G. & Eggeler, G. Transmission electron microscopy study of the microstructural evolution during high-temperature and low-stress (011) \(\left[{01\bar 1} \right]\) shear creep deformation of the superalloy single crystal LEK 94. Journal of Materials Research 32, 4491–4502 (2017). https://doi.org/10.1557/jmr.2017.336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.336

Navigation