Skip to main content
Log in

Hot deformation behavior and microstructure evolution of a high-temperature titanium alloy modified by erbium

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Isothermal compression testing of Ti–5.8Al–3Sn–5Zr–0.5Mo–1.0Nb–1.0Ta–0.4Si–0.2Er titanium alloy is performed on a Gleeble-3500 thermal simulator, and the corresponding microstructures are analyzed to clarify the softening mechanism and participates evolution. A constitutive equation compensated by strain has been established to describe the hot deformation behavior of the alloy. The deformation activation energies are calculated to be 369760.93–699310.86 J/mol in α + β two-phase region and 268030.03–325800.41 J/mol in β single-phase region. At a temperature of 880 °C, the main softening mechanism is the continuous dynamic recrystallization of lamellar α colony, controlled by the mechanical rotation of the sub-grain followed by dislocation climbing and annihilation by diffusion. Meanwhile, the dominant softening mechanism is the discontinuous dynamic recrystallization of β phase during the deformation at temperatures of 920 °C–1080 °C. Silicide containing Er with an average diameter of 20 nm is formed during the water quenching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. R.R. Boyer: An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng., A 213, 103 (1996).

    Article  Google Scholar 

  2. D. Banerjee and J.C. Williams: Perspectives on titanium science and technology. Acta Mater. 61, 844 (2013).

    Article  CAS  Google Scholar 

  3. Z.X. Guo and T.N. Baker: On the microstructure and thermo mechanical processing of titanium alloy IMI685. Mater. Sci. Eng., A 156, 63 (1992).

    Article  Google Scholar 

  4. N. Singh and V. Singh: Effect of temperature on tensile properties of near-α alloy Timetal 834. Mater. Sci. Eng., A 485, 130 (2008).

    Article  CAS  Google Scholar 

  5. D.H. Lee, S.W. Nam, and S.J. Choe: Effect of microstructure and relaxation behavior on the high temperature low cycle fatigue of near-α-Ti-1100. Mater. Sci. Eng., A 291, 60 (2000).

    Article  Google Scholar 

  6. W.J. Jia, W.D. Zeng, J.R. Liu, Y.G. Zhou, and Q.J. Wang: Influence of thermal exposure on the tensile properties and microstructures of Ti60 titanium alloy. Mater. Sci. Eng., A 530, 511 (2011).

    Article  CAS  Google Scholar 

  7. Q. Hong, Y.L. Qi, Y.Q. Zhao, and G.J. Yang: Effect of rolling process on microstructure and properties of Ti600 alloy plates. Rare Met. Mater. Eng. 34(8), 1334 (2015).

    Google Scholar 

  8. M.Y. Hao, J.M. Cai, and J. Du: The effect of heat treatment on microstructure and properties of BT36 high temperature alloy. J. Aeronaut. Mater. 23(02), 14 (2012).

    Google Scholar 

  9. Q.J. Wang, J.R. Liu, and R. Yang: High temperature titanium alloys: Status and perspective. J. Aeronaut. Mater. 34(04), 1 (2014).

    Google Scholar 

  10. S.Z. Zhang, M.M. Li, and R. Yang: Mechanism and kinetics of carbide dissolution in near alpha Ti–5.6Al–4.8Sn–2Zr–1Mo–0.35Si–0.7Nd titanium alloy. Mater. Charact. 62, 1151 (2011).

    Article  CAS  Google Scholar 

  11. L. Xiao, W.J. Lu, and Z.F. Yang: Effect of reinforcements on high temperature mechanical properties of in situ synthesized titanium matrix composites. Mater. Sci. Eng., A 491, 192 (2008).

    Article  CAS  Google Scholar 

  12. S.M.L. Sastry, P.J. Meschter, and J.E. O’Neal: Structure and properties of rapidly solidified dispersion-strengthened titanium alloys Part I. Characterization of dispersoid distribution, structure, and chemistry. Metall. Trans. A 15, 1451 (1984).

    Article  Google Scholar 

  13. K.K. Sankaran, S.M.L. Sastry, and P.S. Pao: The effects of second-phase dispersoids on the deformation behavior of titanium. Metall. Trans. A 11, 196 (1980).

    Article  Google Scholar 

  14. P. Han, B.L. Li, J.M. Yin, T. Liu, and Z.R. Nie: Effect of Er on creep properties of a near-α high temperature titanium alloy. Sci. Tech. Engrg. 12(17), 4124 (2012).

    Google Scholar 

  15. H.R. Jiang, M. Hirohasi, Y. Lu, and H. Imanari: Effect of Nb on the high temperature oxidation of Ti–(0–50 at.%)Al. Scr. Mater. 46, 639 (2002).

    Article  CAS  Google Scholar 

  16. B.G. Fu, H.W. Wang, C.M. Zou, and Z.J. Wei: The effects of Nb content on microstructure and fracture behavior of near α titanium alloys. Mater. Des. 66, 267 (2015).

    Article  CAS  Google Scholar 

  17. S.X. Zhu, Q.J. Wang, J.R. Liu, Y.Y. Liu, and R. Yang: Effect of Ta on oxidation resistance behavior of Ti-60A titanium alloys. Trans. Nonferrous Met. Soc. China 20(1), 138 (2010).

    Article  CAS  Google Scholar 

  18. W.J. Jia, W.D. Zeng, and H.Q. Yu: Effect of aging on the tensile properties and microstructures of a near-alpha titanium alloy. Mater. Des. 58, 108 (2014).

    Article  CAS  Google Scholar 

  19. T. Wang, H.Z. Guo, Y.W. Wang, X.N. Peng, Y. Zhao, and Z.K. Yao: The effect of microstructure on tensile properties, deformation mechanisms and fracture models of TG6 high temperature titanium alloy. Mater. Sci. Eng., A 528, 2370 (2011).

    Article  CAS  Google Scholar 

  20. I. Cvijović-Alagić, N. Gubeljak, M. Rakin, Z. Cvijović, and K. Gerić: Microstructural morphology effects on fracture resistance and crack tip strain distribution in Ti–6Al–4V alloy for orthopedic implants. Mater. Des. 53, 870 (2014).

    Article  CAS  Google Scholar 

  21. Y.G. Zhou, W.D. Zeng, and H.Q. Yu: A new high-temperature deformation strengthening and toughening process for titanium alloys. Mater. Sci. Eng., A 221, 58 (1996).

    Article  Google Scholar 

  22. V. Chandravanshi, R. Sarkar, S.V. Kamat, and T.K. Nandy: Effects of thermomechanical processing and heat treatment on the tensile and creep properties of boron-modified near alpha titanium alloy Ti-1100. Metall. Mater. Trans. A 44A, 201 (2013).

    Article  CAS  Google Scholar 

  23. D.V.V. Satyanarayana, C.M. Omprakash, T. Sridhar, and V. Kumar: Effect of microstructure on creep crack growth behavior of a near-a titanium alloy IMI-834. Metall. Mater. Trans. A 40A, 128 (2009).

    Article  CAS  Google Scholar 

  24. P. Vo, M. Jahazi, and S. Yue: Recrystallization during thermomechanical processing of IMI834. Metall. Mater. Trans. A 30A, 2965 (2008).

    Article  CAS  Google Scholar 

  25. Y.C. Lin, Y. Ding, M.S. Chen, and J. Deng: A new phenomenological constitutive model for hot tensile deformation behaviors of a typical Al–Cu–Mg alloy. Mater. Des. 52, 118 (2013).

    Article  CAS  Google Scholar 

  26. W.W. Peng, W.D. Zeng, Q.J. Wang, and H.Q. Yu: Characterization of high-temperature deformation behavior of as-cast Ti60 titanium alloy using processing map. Mater. Sci. Eng., A 571, 116 (2013).

    Article  CAS  Google Scholar 

  27. H. Wu, S.P. Wen, H. Huang, X.L. Wu, K.Y. Gao, W. Wang, and Z.R. Nie: Hot deformation behavior and constitutive equation of a new type Al–Zn–Mg–Er–Zr alloy during isothermal compression. Mater. Sci. Eng., A 651, 415 (2016).

    Article  CAS  Google Scholar 

  28. Y.L. Zhao, B.L. Li, Z.S. Zhu, and Z.R. Nie: The high temperature deformation behavior and microstructure of TC21 titanium alloy. Mater. Sci. Eng., A 527, 5360 (2010).

    Article  CAS  Google Scholar 

  29. Z.L. Zhao, H. Li, M.W. Fu, H.Z. Guo, and Z.K. Yao: Effect of the initial microstructure on the deformation behavior of Ti60 titanium alloy at high temperature processing. J. Alloys Compd. 617, 525 (2014).

    Article  CAS  Google Scholar 

  30. C.M. Sellars and W.J. Tegart: On the mechanism of hot deformation. Acta Metall. 14, 1136 (1966).

    Article  CAS  Google Scholar 

  31. C. Zener and J.H. Hollomon: Effect of strain rate upon plastic flow of steel. J. Appl. Phys. 15, 22 (1944).

    Article  Google Scholar 

  32. N. Radovi and D. Drobnjak: Effect of interpass time and cooling rate on apparent activation energy for hot working and critical recrystallization temperature of Nb-microalloyed steel. ISIJ Int. 39, 575 (1999).

    Article  Google Scholar 

  33. W.S. Lee and M.T. Lin: The effects of strain rate and temperature on the compressive deformation behaviour of Ti–6A1–4V alloy. J. Mater. Process. Technol. 71(2), 235 (1997).

    Article  Google Scholar 

  34. D. Drobnjak, N. Radovi, and M. Andjeli: Effect of test variables on apparent activation energy for hot working and critical recrystallization temperatures of V-microalloyed steel. Steel Res. 68(7), 306 (1997).

    Article  CAS  Google Scholar 

  35. Y. Niu, H.L. Hou, M.Q. Li, and Z.Q. Li: High temperature deformation behavior of a near alpha Ti600 titanium alloy. Mater. Sci. Eng., A 492, 24 (2008).

    Article  CAS  Google Scholar 

  36. M.Q. Li, H.S. Pan, Y.Y. Lin, and J. Luo: High temperature deformation behavior of near alpha Ti–5.6Al–4.8Sn–2.0Zr alloy. J. Mater. Process. Technol. 183, 71 (2007).

    Article  CAS  Google Scholar 

  37. H.R. Rezaei Ashtiani, M.H. Parsa, and H. Bisadi: Constitutive equations for elevated temperature flow behavior of commercial purity aluminum. Mater. Sci. Eng., A 545, 61 (2012).

    Article  CAS  Google Scholar 

  38. S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan: Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel. Mater. Sci. Eng., A 500, 114 (2009).

    Article  CAS  Google Scholar 

  39. D.T. Mcdonald, F.J. Humphreys, and P.S. Bate: Nucleation and texture development during dynamic recrystallization of copper. J. Mater. Process. Technol. 263(10), 1195 (2005).

    Google Scholar 

  40. F.C. Ma, W.J. Lu, J.N. Qin, and D. Zhang: Microstructure evolution of near-α titanium alloys during thermomechanical processing. Mater. Sci. Eng., A 416, 59 (2006).

    Article  CAS  Google Scholar 

  41. M.Y. Chu, S.X. Hui, Z. Zhang, and J.Y. Shen: Precipitation mechanism of silicide in BT25y titanium alloy in solution treatment and thermal exposure. J. Chin. Electron Microsc. Soc. 23(2), 168 (2004).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research was supported by the Beijing Natural Science Foundation (Project No. 2162004), and National Natural Science Foundation of China (Project No. 51371013).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bolong Li or Zuoren Nie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Li, B., Wang, Z. et al. Hot deformation behavior and microstructure evolution of a high-temperature titanium alloy modified by erbium. Journal of Materials Research 32, 1517–1527 (2017). https://doi.org/10.1557/jmr.2017.33

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.33

Navigation