Skip to main content
Log in

Deformation mechanisms in submicron Be wires

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Plastic deformation of small metallic single crystals has focused a lot of attention because of their enhanced or specific mechanical properties. Here, submicron beryllium wires, obtained from selective etching of an Al/Be eutectic alloy, were deformed in tension in situ using a transmission electron microscope. Our observations indicate that wires oriented parallel to their 〈c〉 axis and containing almost no dislocations present a fragile-like behavior associated to a high stress level. \(\left\{{10\bar 12} \right\}\) 〈1011〉 twins were also frequently observed near fractured wires, indicating that this deformation mode is important in small-scale Be. In a twinned area, a locally ductile behavior was observed due to the favorable orientation for prismatic slip. We also stress out the importance of a remaining outer layer, made of Al oxide, in the plastic deformation. On the basis of finite element modeling, we show that the deformation of the wire may involve dislocations moving along the wire axis, in or close to the Be/Al oxide interface, in agreement with in situ observations. Thus, even in naturally oxidized wires, the outer layer is supposed to play an important role in the deformation, not only in modifying a stress/strain field but also presumably in facilitating diffusional processes, such as dislocation climb or dislocation nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. O. Kraft, P.A. Gruber, R. Mönig, and D. Weygand: Plasticity in confined dimensions. Annu. Rev. Mater. Res. 40, 296 (2010).

    Article  Google Scholar 

  2. J.R. Greer and J.T.M. De Hosson: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56, 654 (2011).

    Article  CAS  Google Scholar 

  3. H. Bei, S. Shim, G. Pharr, and E. George: Effects of pre-strain on the compressive stress–strain response of Mo-alloy single-crystal micropillars. Acta Mater. 56, 4762 (2008).

    Article  CAS  Google Scholar 

  4. F. Mompiou, M. Legros, A. Sedlmayr, D. Gianola, D. Caillard, and O. Kraft: Source-based strengthening of sub-micrometer Al fibers. Acta Mater. 60, 977 (2012).

    Article  CAS  Google Scholar 

  5. F. Mompiou and M. Legros: Plasticity mechanisms in sub-micron Al fiber investigated by in situ TEM. Adv. Eng. Mater. 14, 955 (2012).

    Article  CAS  Google Scholar 

  6. D. Dunstan and A. Bushby: Grain size dependence of the strength of metals: The Hall–Petch effect does not scale as the inverse square root of grain size. Int. J. Plast. 53, 56 (2014).

    Article  Google Scholar 

  7. P.S. Phani, K. Johanns, E. George, and G. Pharr: A simple stochastic model for yielding in specimens with limited number of dislocations. Acta Mater. 61, 2489 (2013).

    Article  Google Scholar 

  8. J. Sharon, Y. Zhang, F. Mompiou, M. Legros, and K. Hemker: Discerning size effect strengthening in ultrafine-grained Mg thin films. Scr. Mater. 75, 10 (2014).

    Article  CAS  Google Scholar 

  9. E. Lilleodden: Microcompression study of Mg (0001) single crystal. Scr. Mater. 62, 532 (2010).

    Article  CAS  Google Scholar 

  10. C.M. Byer, B. Li, B. Cao, and K.T. Ramesh: Microcompression of single-crystal magnesium. Scr. Mater. 62, 536 (2010).

    Article  CAS  Google Scholar 

  11. C.M. Byer and K. Ramesh: Effects of the initial dislocation density on size effects in single-crystal magnesium. Acta Mater. 61, 3808 (2013).

    Article  CAS  Google Scholar 

  12. D.M. Norfleet: Sample size effects related to nickel, titanium and nickel-titanium at the micron size scale. Ph.D. thesis, Ohio State University, Columbus, Ohio, 2007.

    Google Scholar 

  13. Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li, and A.M. Minor: The nanostructured origin of deformation twinning. Nano Lett. 12, 887 (2012).

    Article  CAS  Google Scholar 

  14. J. Poirier, J. Antolin, and J. Dupouy: Investigations on some deformation modes of beryllium. Can. J. Phys. 45, 1221 (1967).

    Article  CAS  Google Scholar 

  15. P. Regnier and J.M. Dupouy: Prismatic slip in beryllium and the relative ease of glide in HCP metals. Phys. Status Solidi 39, 79 (1970).

    Article  CAS  Google Scholar 

  16. J. Beuers, S. Jonsson, and G. Petzow: Tem in situ deformation of beryllium single crystals—A new explanation for the anomalous temperature dependence of the critical resolved shear stress for prismatic slip. Acta Metall. 35, 2277 (1987).

    Article  CAS  Google Scholar 

  17. A. Couret and D. Caillard: Prismatic slip in beryllium, i. the controlling mechanism at the peak temperature. Philos. Mag. A 59, 783 (1989).

    Article  CAS  Google Scholar 

  18. F. Mompiou, M. Legros, C. Ensslen, and O. Kraft: In situ TEM study of twin boundary migration in sub-micron Be fibers. Acta Mater. 96, 57 (2015).

    Article  CAS  Google Scholar 

  19. F. Mompiou and M. Legros: Quantitative grain growth and rotation probed by in situ TEM straining and orientation mapping in small grained Al thin films. Scr. Mater. 99, 5 (2015).

    Article  CAS  Google Scholar 

  20. J.W. Cahn and J.E. Taylor: A unified approach to motion of grain boundaries, relative tangential translation along grain boundaries, and grain rotation. Acta Mater. 52, 4887 (2004).

    Article  CAS  Google Scholar 

  21. A. Serra, D. Bacon, and R. Pond: Dislocations in interfaces in the h.c.p. metals—I. Defects formed by absorption of crystal dislocations. Acta Mater. 47, 1425 (1999).

    Article  CAS  Google Scholar 

  22. M. Ignat, R. Bonnet, D. Caillard, and J. Martin: Creep of lamellar Al–CuAl2 composite. 1. Microstructural observations. Phys. Status Solidi A 49, 675 (1978).

    Article  CAS  Google Scholar 

  23. J. Christian and S. Mahajan: Deformation twinning. Prog. Mater. Sci. 39, 1 (1995).

    Article  Google Scholar 

  24. F. Mompiou and D. Caillard: Dislocation-climb plasticity: Modelling and comparison with the mechanical properties of icosahedral AlPdMn. Acta Mater. 56, 2262 (2008).

    Article  CAS  Google Scholar 

  25. D.C. Van Aken and H.L. Fraser: The microstructures of rapidly solidified hyper-eutectic AlBe alloys. Acta Metall. 33, 963 (1985).

    Article  Google Scholar 

  26. D.C. Van Aken: Crystallographic orientation relationships observed in rapidly solidified Al-Be alloys. In Dispersion Strengthened Aluminum Alloys, Y. Kim and W. Griffith, eds. (The Minerals, Metals & Materials Society, Pittsburgh, Pennsylvania, 1988).

    Google Scholar 

  27. K. Marukawa and Y. Matsubara: A new method of Burgers vector identification for grain boundary dislocations from electron microscopic images. Trans. Jpn. Inst. Met. 20, 560 (1979).

    Article  CAS  Google Scholar 

  28. J.F. Smith and C.L. Arbogast: Elastic constants of single crystal beryllium. J. Appl. Phys. 31, 99 (1960).

    Article  CAS  Google Scholar 

  29. K. Ng and A. Ngan: Effects of trapping dislocations within small crystals on their deformation behavior. Acta Mater. 57, 4902 (2009).

    Article  CAS  Google Scholar 

  30. S-W. Lee, A.T. Jennings, and J.R. Greer: Emergence of enhanced strengths and Bauschinger effect in conformally passivated copper nanopillars as revealed by dislocation dynamics. Acta Mater. 61, 1872 (2013).

    Article  CAS  Google Scholar 

  31. J.A. El-Awady, S.I. Rao, C. Woodward, D.M. Dimiduk, and M.D. Uchic: Trapping and escape of dislocations in micro-crystals with external and internal barriers. Int. J. Plast. 27, 372 (2011).

    Article  Google Scholar 

  32. T. Balk, G. Dehm, and E. Artz: Parallel glide: Unexpected dislocation motion parallel to the substrate in ultrathin copper films. Acta Mater. 51, 4471 (2003).

    Article  CAS  Google Scholar 

  33. L.Y. Chen, M. He, J. Shin, G. Richter, and D.S. Gianola: Measuring surface dislocation nucleation in defect-scarce nanostructures. Nat. Mater. 14, 707 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank L. Durand for her assistance in running FEM simulations and D. Lamirault for the sample preparation. This work has been supported by the French National Research Agency under the “Investissement d’Avenir” program reference No. ANR-10-EQPX-38-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Mompiou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mompiou, F., Legros, M. & Lartigue-Korinek, S. Deformation mechanisms in submicron Be wires. Journal of Materials Research 32, 4616–4625 (2017). https://doi.org/10.1557/jmr.2017.327

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.327

Navigation