Skip to main content
Log in

High temperature properties and fatigue strength of novel wrought γ/γ′ Co-base superalloys

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper presents the high temperature yield and fatigue strength as well as thermophysical properties of two polycrystalline wrought γ/γ′ Co-base superalloys developed for application in a temperature regime above 700 °C. The alloys CoWAlloy1 (Co42Ni32Cr12Al6W3Ti2.5Ta1.5 + Si,C,B,Zr,Hf) and CoWAlloy2 (Co41Ni32Cr12Al9W5 + Ti,Ta,Si,C,B,Zr,Hf) exhibited solidus temperatures of 1070 °C and 1030 °C, respectively, and a γ′ fraction of about 50%. CoWAlloy2 displayed a rather high Young’s modulus of 250 GPa. The two Co-base superalloys showed a good high temperature strength exceeding Ni-base disc alloys U720Li and Waspaloy at temperatures above 800 °C. When comparing the yield strength from tensile and compression tests, no asymmetry could be found. The low-cycle fatigue life of CoWAlloy2 at a total strain amplitude of 0.5% is similar to that of U720Li and Waspaloy (about 370 cycles, R = −1). During long-term aging for 1024 h at 750 °C, no additional phases were formed and the room temperature hardness barely changed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. M.C. Hardy, B. Zirbel, G. Shen, and R. Shankar: Developing damage tolerance and creep resistance in a high strength nickel alloy for disc applications. In Proceedings 10th International Symposium on Superalloys, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds. (The Minerals, Metals and Materials Society, Warrendale, 2004); pp. 83–90.

    Google Scholar 

  2. T.P. Gabb, A. Garg, D.L. Ellis, and K.M. O’Connor: Detailed Microstructural Characterization of the Disk Alloy ME3 (NASA Glenn Research Center, Cleveland, Ohio, 2004). NASA/TM-2004–74383.

    Google Scholar 

  3. A. Bauer, S. Neumeier, F. Pyczak, and M. Göken: Creep strength and microstructure of polycrystalline g’-strengthened cobalt-base superalloys. In Proceedings 12th International Symposium on Superalloys, E.S. Huron, R.C. Reed, M.C. Hardy, M.J. Mills, R.E. Montero, P.D. Portella, and J. Telesman, eds. (The Minerals, Metals and Materials Society, Warrendale, 2012); pp. 695–703.

    Google Scholar 

  4. S. Neumeier, L.P. Freund, and M. Göken: Novel wrought γ/γ′ cobalt base superalloys with high strength and improved oxidation resistance. Scr. Mater. 109, 104 (2015).

    Article  CAS  Google Scholar 

  5. M. Fahrmann, W. Hermann, E. Fahrmann, A. Boegli, T.M. Pollock, and H.G. Sockel: Determination of matrix and precipitate elastic constants in (γ–γ′) Ni-base model alloys, and their relevance to rafting. Mater. Sci. Eng., A 260, 212 (1999).

    Article  Google Scholar 

  6. D.J. Bryant and G. McIntosh: The manufacture and evaluation of a large lurbine disc in cast and wrought alloy 720Li. In Proceedings 8th International Symposium on Superalloys, R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford, eds. (The Minerals, Metals and Materials Society, Warrendale, 1996); pp. 713–722.

    Google Scholar 

  7. A. Bauer: Hochtemperatureigenschaften Polykristalliner γ′-Gehärteter Kobaltbasis-Superlegierungen (Friedrich-Alexander Universität, Erlangen-Nürnberg, 2015).

    Google Scholar 

  8. Q. Yao, H. Xing, and J. Sun: Structural stability and elastic property of the L12 ordered Co3(Al,W) precipitate. Appl. Phys. Lett. 89 (16), 161906 (2006).

    Article  Google Scholar 

  9. M. Ooshima, K. Tanaka, N.L. Okamoto, K. Kishida, and H. Inui: Effects of quaternary alloying elements on the γ′ solvus temperature of Co–Al–W based alloys with fcc/L12 two-phase microstructures. J. Alloys Compd. 508 (1), 71 (2010).

    Article  CAS  Google Scholar 

  10. D.U. Furrer and H-J. Fecht: γ′ formation in superalloy U720LI. Scr. Mater. 40 (11), 1215 (1999).

    Article  CAS  Google Scholar 

  11. H. Penkalla, J. Wosik, and A. Czyrska-Filemonowicz: Quantitative microstructural characterisation of Ni-base superalloys. Mater. Chem. Phys. 81 (2–3), 417 (2003).

    Article  CAS  Google Scholar 

  12. Special Metals Corporation: Data Sheet Udimet Alloy, 720 (2004).

  13. Special Metals Corporation: Data Sheet Waspaloy (2004).

  14. P.E. Aba-Perea, T. Pirling, P.J. Withers, J. Kelleher, S. Kabra, and M. Preuss: Determination of the high temperature elastic properties and diffraction elastic constants of Ni-base superalloys. Mater. Des. 89, 856 (2016).

    Article  CAS  Google Scholar 

  15. P.R. Bhowal, E.F. Wright, and E.L. Raymond: Effects of cooling rate and γ′ morphology on creep and stress-rupture properties of a powder metallurgy superalloy. Metall. Trans. A 21 (6), 1709 (1990).

    Article  Google Scholar 

  16. M.P. Jackson and R.C. Reed: Heat treatment of UDIMET 720Li: The effect of microstructure on properties. Mater. Sci. Eng., A 259 (1), 85 (1999).

    Article  Google Scholar 

  17. S. Sinharoy, P. Virro-Nic, and W.W. Milligan: Deformation and strength behavior of two nickel-base turbine disk alloys at 650 °C. Metall. Mater. Trans. A 32 (8), 2021 (2001).

    Article  Google Scholar 

  18. D. Locq, P. Caron, S. Raujol, F. Pettinari-Sturmel, A. Coujou, and N. Clément: On the role of tertiary γ′ precipitates in the creep behaviour at 700 C of a PM disk superalloy. In Proceedings 10th International Symposium on Superalloys, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds. (The Minerals, Metals and Materials Society, Warrendale, 2004); pp. 179–187.

    Google Scholar 

  19. H-Y. Yan, J. Coakley, V.A. Vorontsov, N.G. Jones, H.J. Stone, and D. Dye: Alloying and the micromechanics of Co–Al–W–X quaternary alloys. Mater. Sci. Eng., A 613, 201 (2014).

    Article  CAS  Google Scholar 

  20. C.H. Zenk, S. Neumeier, H.J. Stone, and M. Göken: Mechanical properties and lattice misfit of γ/γ′ strengthened Co-base superalloys in the Co–W–Al–Ti quaternary system. Intermetallics 55, 28 (2014).

    Article  CAS  Google Scholar 

  21. M. Preuss, J.Q. da Fonseca, I. Kyriakoglou, P.J. Withers, and G.J. Baxter: Characterization of γ′ across inertia friction welded alloy 720Li. In Proceedings 10th International Symposium on Superalloys, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds. (The Minerals, Metals and Materials Society, Warrendale, 2004); pp. 477–484.

    Google Scholar 

  22. H.E. Collins: Relative stability of carbide and intermetallic phases in nickel-base superalloys. In Proceedings 1st International Symposium on Structural Stability of Superalloys, M.J. Donachie, ed. (Joint Committees of ASTM, ASME, ASM, and AIME, Seven Springs, Pennsylvania, 1968); pp. 171–198.

    Google Scholar 

  23. S. Mannan, S. Patel, and J. de Barbadillo: Long term thermal stability of Inconel alloys 718, 706, 909, and Waspaloy at 593 °C and 704 °C. In Proceedings 9th International Symposium on Superalloys, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, and J.J. Schirra, eds. (The Minerals, Metals and Materials Society, Warrendale, 2000); pp. 449–458.

    Google Scholar 

  24. W-D. Cao: Thermal stability characterization of Ni-base ATI 718PLUS®. In Proceedings 11th International Symposium on Superalloys, R.C. Reed, K.A. Green, P. Caron, T.P. Gabb, M.G. Fahrmann, E.S. Huron, and S.A. Woodard, eds. (The Minerals, Metals and Materials Society, Warrendale, 2008), pp. 789–797.

    Google Scholar 

  25. D. Helm and O. Roder: Influence of long term exposure in air on microstructure, surface stability and mechanical properties of Udimet 720Li. In Proceedings 9th International Symposium on Superalloys, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, and J.J. Schirra, eds. (The Minerals, Metals and Materials Society, Warrendale, 2000); pp. 487–493.

    Google Scholar 

  26. S.K. Sondhi, B.F. Dyson, and M. McLean: Tension–compression creep asymmetry in a turbine disc superalloy: Roles of internal stress and thermal ageing. Acta Mater. 52 (7), 1761 (2004).

    Article  CAS  Google Scholar 

  27. A. Suzuki, H. Inui, and T.M. Pollock: L12-strengthened cobalt-base superalloys. Annu. Rev. Mater. Res. 45 (1), 345 (2015).

    Article  CAS  Google Scholar 

  28. K. Gopinath, A.K. Gogia, S.V. Kamat, R. Balamuralikrishnan, and U. Ramamurty: Low cycle fatigue behaviour of a low interstitial Ni-base superalloy. Acta Mater. 57 (12), 3450 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge funding by the German Research Foundation (DFG) through project B3 of the collaborative research center SFB/Transregio 103 “From Atoms to Turbine Blades—a Scientific Approach for Developing the Next Generation of Single Crystal Superalloys”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Patricia Freund.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freund, L.P., Giese, S., Schwimmer, D. et al. High temperature properties and fatigue strength of novel wrought γ/γ′ Co-base superalloys. Journal of Materials Research 32, 4475–4482 (2017). https://doi.org/10.1557/jmr.2017.315

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.315

Navigation