Skip to main content
Log in

Uranyl peroxide nanoclusters at high-pressure

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

U60 ([UO2(O2)(OH)]6060− in water) is a uranyl peroxide nanocluster with a fullerene topology and Oh symmetry. U60 clusters can exist in crystalline solids or in liquids; however, little is known of their behavior at high pressures. We compressed the U60-bearing material: Li68K12(OH)20[UO2(O2)(OH)]60(H2O)310 (\(Fm\bar 3\); a = 37.884 Å) in a diamond anvil cell to determine its response to increasing pressure. Three length scales and corresponding structural features contribute to the compression response: uranyl peroxide bonds (<0.5 nm), isolated single nanoclusters (2.5 nm), and the long-range periodicity of nanoclusters within the solid (>3.7 nm). Li68K12(OH)20[UO2(O2)(OH)]60(H2O)310 transformed to a tetragonal structure below 2 GPa and irreversibly amorphized between 9.6 and 13 GPa. The bulk modulus of the tetragonal U60-bearing material was 25 ± 2 GPa. The pressure-induced amorphous phase contained intact U60 clusters, which were preserved beyond the loss of long-range periodicity. The persistence of U60 clusters at high pressure may have been enhanced by the interaction between U60 nanoclusters and the alcohol pressure medium. Once formed, U60 nanoclusters persist regardless of their associated long-range ordering—in crystals, amorphous solids, or solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. G. Sigmon, J. Ling, D. Unruh, L. Moore-Shay, M. Ward, B. Weaver, and P. Burns: Uranyl–peroxide interactions favor nanocluster self-assembly. J. Am. Chem. Soc. 131, 16648 (2009).

    Article  CAS  Google Scholar 

  2. P. Miró, S. Pierrefixe, M. Gicquel, A. Gil, and C. Bo: On the origin of the cation templated self-assembly of uranyl-peroxide nanoclusters. J. Am. Chem. Soc. 132, 17787 (2010).

    Article  CAS  Google Scholar 

  3. B. Vlaisavljevich, L. Gagliardi, and P. Burns: Understanding the structure and formation of uranyl peroxide nanoclusters by quantum chemical calculations. J. Am. Chem. Soc. 132, 14503 (2010).

    Article  CAS  Google Scholar 

  4. P. Burns and K. Hughes: Studtite, [(UO2)(O2)(H2O)2](H2O)2: The first structure of a peroxide mineral. Am. Mineral. 88, 1165 (2003).

    Article  CAS  Google Scholar 

  5. P. Burns, K. Kubatko, G. Sigmon, B. Fryer, J. Gagnon, M. Antonio, and L. Soderholm: Actinyl peroxide nanospheres. Angew. Chem., Int. Ed. 44, 2135 (2005).

    Article  CAS  Google Scholar 

  6. D. Unruh, A. Burtner, L. Pressprich, G. Sigmon, and P. Burns: Uranyl peroxide closed clusters containing topological squares. J. Chem. Soc., Dalton Trans. 39, 5807 (2010).

    Article  CAS  Google Scholar 

  7. T. Forbes, J. McAlpin, R. Murphy, and P. Burns: Metal–oxygen isopolyhedra assembled into fullerene topologies. Angew. Chem., Int. Ed. 47, 2824 (2008).

    Article  CAS  Google Scholar 

  8. G. Sigmon, D. Unruh, J. Ling, B. Weaver, M. Ward, L. Presspich, A. Simonetti, and P. Burns: Symmetry versus minimal pentagonal adjacencies in uranium-based polyoxometalate fullerene topologies. Angew. Chem., Int. Ed. 48, 2737 (2009).

    Article  CAS  Google Scholar 

  9. D. Unruh, J. Ling, J. Qiu, L. Pressprich, M. Baranay, M. Ward, and P. Burns: Complex nanoscale cage clusters built from uranyl polyhedra and phosphate tetrahedra. Inorg. Chem. 50, 5509 (2011).

    Article  CAS  Google Scholar 

  10. J. Ling, J. Qiu, J. Szymanowski, and P. Burns: Low-symmetry uranyl pyrophosphate cage clusters. Chem.–Eur. J. 17, 2571 (2011).

    Article  CAS  Google Scholar 

  11. J. Ling, C. Wallace, J. Szymanowski, and P. Burns: Hybrid uranium–oxalate fullerene topology cage clusters. Angew. Chem., Int. Ed. 49, 7271 (2010).

    Article  CAS  Google Scholar 

  12. J. Ling, M. Ozga, M. Stoffer, and P. Burns: Uranyl peroxide pyrophosphate cage clusters with oxalate and nitrate bridges. J. Chem. Soc., Dalton Trans. 41, 7278 (2012).

    Article  CAS  Google Scholar 

  13. J. Qiu, J. Ling, L. Jouffret, R. Thomas, J. Szymanowski, and P. Burns: Water-soluble multi-cage super tetrahedral uranyl peroxide phosphate clusters. Chem. Sci. 5, 303 (2014).

    Article  CAS  Google Scholar 

  14. J. Qiu, J. Ling, A. Sui, J. Szymanowski, A. Simonetti, and P. Burns: Time-resolved self-assembly of a fullerene-topology core–shell cluster containing 68 uranyl polyhedra. J. Am. Chem. Soc. 134, 1810 (2012).

    Article  CAS  Google Scholar 

  15. J. Ling, J. Qiu, G. Sigmon, M. Ward, J. Szymanowski, and P. Burns: Uranium pyrophosphate/methylenediphosphonate polyoxometalate cage clusters. J. Am. Chem. Soc. 132, 13395 (2010).

    Article  CAS  Google Scholar 

  16. J. Qiu, K. Nguyen, L. Jouffret, J. Szymanowski, and P. Burns: Time-resolved assembly of chiral uranyl peroxo cage clusters containing belts of polyhedra. Inorg. Chem. 52, 337 (2013).

    Article  CAS  Google Scholar 

  17. J. Ling, J. Qiu, and P. Burns: Uranyl peroxide oxalate cage and core–shell clusters containing 50 and 120 uranyl ions. Inorg. Chem. 51, 2403 (2012).

    Article  CAS  Google Scholar 

  18. P. Burns: Nanoscale uranium-based cage clusters inspired by uranium mineralogy. Mineral. Mag. 75, 1 (2011).

    Article  CAS  Google Scholar 

  19. J. Qiu and P. Burns: Clusters of actinides with oxide, peroxide or hydroxide bridges. Chem. Rev. 113, 1097 (2012).

    Article  CAS  Google Scholar 

  20. P. Burns, R. Ewing, and F. Hawthorne: The crystal chemistry of hexavalent uranium: Polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. Can. Mineral. 35, 1551 (1997).

    CAS  Google Scholar 

  21. P. Burns: U6+ minerals and inorganic compounds: Insights into an expanded structural hierarchy of crystal structures. Can. Mineral. 43, 1839 (2005).

    Article  CAS  Google Scholar 

  22. P. Burns, R. Ewing, and A. Navrotsky: Nuclear fuel in a reactor accident. Science 335, 1184 (2012).

    Article  CAS  Google Scholar 

  23. C. Armstrong, M. Nyman, T. Shvareva, G. Sigmon, P. Burns, and A. Navrotsky: Uranyl peroxide enhanced nuclear fuel corrosion in seawater. Proc. Natl. Acad. Sci. 109, 1874 (2012).

    Article  CAS  Google Scholar 

  24. S. Flynn, J. Szymanowski, Y. Gao, T. Liu, P. Burns, and J. Fein: Experimental measurements of U60 nanocluster stability in aqueous solution. Geochim. Cosmochim. Acta 156, 94 (2015).

    Article  CAS  Google Scholar 

  25. C. Wallace: Solution and aggregation behavior of the U60 nanocluster and post-detonation nuclear forensic analysis of trinitite. Ph.D. thesis, University of Notre Dame, Notre Dame, Indiana, 2013.

    Google Scholar 

  26. E. Wylie, K. Peruski, J. Weidman, W. Phillip, and P. Burns: Ultrafiltration of uranyl peroxide nanoclusters for the separation of uranium from aqueous solution. ACS Appl. Mater. Interfaces. 6, 473 (2013).

    Article  CAS  Google Scholar 

  27. E. Wylie, K. Peruski, S. Prizio, A. Bridges, T. Rudisill, D. Hobbs, W. Phillip, and P. Burns: Processing used nuclear fuel with nanoscale control of uranium and ultrafiltration. J. Nucl. Mater. 473, 125 (2016).

    Article  CAS  Google Scholar 

  28. K. Peruski, V. Bernales, M. Dembowski, H. Lobeck, K. Pellegrini, G. Sigmon, S. Hickam, C. Wallace, J. Szymanowski, E. Balboni, L. Gagliardi, and P. Burns: Uranyl peroxide cage cluster solubility in water and the role of the electrical double layer. Inorg. Chem. 56, 1333 (2017).

    Article  CAS  Google Scholar 

  29. J. Patterson, S. Catledge, Y. Vohra, J. Akella, and S. Weir: Electrical and mechanical properties of C70 fullerene and graphite under high pressures studied using designer diamond anvils. Phys. Rev. Lett. 85, 5634 (2000).

    Article  Google Scholar 

  30. R. Kumar, M. Pravica, A. Cornelius, M. Nicol, M. Hu, and P. Chow: X-ray Raman scattering studies on C60 fullerenes and multi-walled carbon nanotubes under pressure. Diamond Relat. Mater. 16, 1250 (2007).

    Article  CAS  Google Scholar 

  31. U. Venkateswaran, A. Rao, E. Richter, M. Menon, A. Rinzler, R. Smalley, and P. Eklund: Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 10928 (1999).

    Article  CAS  Google Scholar 

  32. E. Miller, D. Nesting, and J. Badding: Quenchable transparent phase of carbon. Chem. Mater. 9, 18 (1997).

    Article  CAS  Google Scholar 

  33. A. Sood, P. Teresdesai, D. Muthu, R. Sen, A. Govindaraj, and C. Rao: Pressure behaviour of single wall carbon nanotube bundles and fullerenes: A Raman study. Phys. Status Solidi B 215, 393 (1999).

    Article  CAS  Google Scholar 

  34. J. Patterson, Y. Vohra, S. Weir, and J. Akella: Single-wall carbon nanotubes under high pressures to 62 GPa studied using designer diamond anvils. J. Nanosci. Nanotechnol. 1, 143 (2001).

    Article  CAS  Google Scholar 

  35. J. Patterson, S. Catledge, Y. Vohra, J. Akella, and S. Weir: Electrical and mechanical properties of C70 fullerene and graphite under high pressures studied using designer diamond anvils. Phys. Rev. Lett. 85, 5364 (2000).

    Article  CAS  Google Scholar 

  36. Y. Lin, L. Zhang, H. Mao, P. Chow, Y. Xiao, M. Baldini, J. Shu, and W. Mao: Amorphous diamond: A high-pressure superhard carbon allotrope. Phys. Rev. Lett. 107, 175504 (2011).

    Article  CAS  Google Scholar 

  37. L. Wang, B. Liu, H. Li, W. Yang, Y. Ding, S. Sinogeikin, Y. Meng, Z. Liu, X. Zeng, and W. Mao: Long-range ordered carbon clusters: A crystalline material with amorphous building blocks. Science 337, 825 (2012).

    Article  CAS  Google Scholar 

  38. D. Wang and A. Fernandez-Martinez: Order from disorder. Science 337, 812 (2012).

    Article  CAS  Google Scholar 

  39. S. Elliott: Medium-range structural order in covalent amorphous solids. Nature 354, 445 (1991).

    Article  CAS  Google Scholar 

  40. G. Lucovsky: Specification of medium range order in amorphous materials. J. Non-Cryst. Solids 97, 155 (1987).

    Article  Google Scholar 

  41. L. Červinka: Medium-range ordering in non-crystalline solids. J. Non-Cryst. Solids 90, 371 (1987).

    Article  Google Scholar 

  42. H. Mao, P. Bell, J. Shaner, and S. Steinberg: Specific volume measurements of Cu, Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar. J. Appl. Phys. 49, 3276 (1978).

    Article  CAS  Google Scholar 

  43. R. Angel, M. Bujak, J. Zhao, G. Gatta, and S. Jacobsen: Effective hydrostatic limits of pressure media for high-pressure crystallographic studies. J. Appl. Crystallogr. 40, 26 (2007).

    Article  CAS  Google Scholar 

  44. W. Bassett: Diamond anvil cell, 50th birthday. High Pressure Res. 29, 163 (2009).

    Article  CAS  Google Scholar 

  45. A. Jaffe, Y. Lin, W. Mao, and H. Karunadasa: Pressure-induced conductivity and yellow-to-black piezochromism in a layered Cu–Cl hybrid perovskite. J. Am. Chem. Soc. 137, 1673 (2015).

    Article  CAS  Google Scholar 

  46. S. Jiang, Y. Fang, R. Li, H. Xiao, J. Crowley, C. Wang, T. White, W. Goddard, Z. Wang, T. Baikie, and J. Fang: Pressure-dependent polymorphism and band-gap tuning of methylammonium lead iodide perovskite. Angew. Chem., Int. Ed. 55, 6540 (2016).

    Article  CAS  Google Scholar 

  47. D. Umeyama, Y. Lin, and H. Karunadasa: Red-to-black piezochromism in a compressible Pb–I–SCN layered perovskite. Chem. Mater. 28, 3241 (2016).

    Article  CAS  Google Scholar 

  48. A. Jaffe, Y. Lin, C. Beavers, J. Voss, W. Mao, and H. Karunadasa: High-pressure single-crystal structures of 3D lead-halide hybrid perovskites and pressure effects on their electronic and optical properties. ACS Cent. Sci. 2, 201 (2016).

    Article  CAS  Google Scholar 

  49. E. Spencer, M. Kiran, W. Li, U. Ramamurty, N. Ross, and A. Cheetham: Pressure-induced bond rearrangement and reversible phase transformation in a metal–organic framework. Angew. Chem., Int. Ed. 53, 5583 (2014).

    Article  CAS  Google Scholar 

  50. E. Spencer, J. Zhao, N. Ross, M. Andrews, R. Surbella, and C. Cahill: The influence of pressure on the photoluminescence properties of a terbium-adipate framework. J. Solid State Chem. 202, 99 (2013).

    Article  CAS  Google Scholar 

  51. E. Spencer, N. Ross, R. Surbella, and C. Cahill: The influence of pressure on the structure of a 2D uranium(VI) carboxyphosphonoate compound. J. Solid State Chem. 218, 1 (2014).

    Article  CAS  Google Scholar 

  52. K. Heffernan, N. Ross, E. Spencer, and L. Boatner: The structural response of gadolinium phosphate to pressure. J. Solid State Chem. 241, 180 (2016).

    Article  CAS  Google Scholar 

  53. E. Spencer, N. Ross, and R. Angel: The high pressure behaviour of the 3D copper carbonate framework {[Cu(CO3)2](CH6N3)2}n. J. Mater. Chem. 22, 2074 (2012).

    Article  CAS  Google Scholar 

  54. E. Spencer, V. Soghomonian, and N. Ross: Gallium arsenate dihydrate under pressure: Elastic properties, compression mechanism, and hydrogen bonding. Inorg. Chem. 54, 7548 (2015).

    Article  CAS  Google Scholar 

  55. M. Wojdyr: Fityk: A general-purpose peak fitting program. J. Appl. Crystallogr. 43(5), 1126 (2010).

    Article  CAS  Google Scholar 

  56. J. Rodriguez-Carvajal: FullProf Suite (LLB Sacley and LCSIM Rennes, France, 2003).

    Google Scholar 

  57. F. Birch: Finite elastic strain of cubic crystals. Phys. Rev. 71, 809 (1947).

    Article  CAS  Google Scholar 

  58. R. Angel, M. Alvaro, and J. Gonzalez-Platas: EosFit7c and a Fortran module (library) for equation of state calculations. Z. Kristallogr.–Cryst. Mater. 229, 405 (2014).

    Article  CAS  Google Scholar 

  59. B. McGrail, G. Sigmon, L. Jouffret, C. Andrews, and P. Burns: Raman spectroscopic and ESI-MS characterization of uranyl peroxide cage clusters. Inorg. Chem. 53, 1562 (2014).

    Article  CAS  Google Scholar 

  60. R. Haddon, L. Brus, and K. Raghavachari: Electronic structure and bonding in icosahedral C60. Chem. Phys. Lett. 125, 459 (1986).

    Article  CAS  Google Scholar 

  61. J. Martin, S. Goettler, N. Fossé, and L. Iton: Designing intermediate-range order in amorphous materials. Nature 419, 381 (2002).

    Article  CAS  Google Scholar 

  62. X. Roy, C. Lee, A. Crowther, C. Schenck, T. Besara, R. Lalancette, T. Siegrist, P. Stephens, L. Brus, P. Kim, and M. Steigerwald: Nanoscale atoms in solid-state chemistry. Science 341, 157 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Science under Award #DE-SC0001089. KMT gratefully acknowledges funding from the Stanford VPGE, DARE program. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. The Advanced Photon Source is a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors thank Dr. Changyong Park and Dr. Curtis Kenney-Benson for their help setting up these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katlyn M. Turner.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turner, K.M., Szymanowski, J.E.S., Zhang, F. et al. Uranyl peroxide nanoclusters at high-pressure. Journal of Materials Research 32, 3679–3688 (2017). https://doi.org/10.1557/jmr.2017.301

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.301

Navigation