Skip to main content

Advertisement

Log in

Nanoenabling electrochemical sensors for life sciences applications

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Electrochemical sensing systems are advancing into a wide range of new applications, moving from the traditional lab environment into disposable devices and systems, enabling real-time continuous monitoring of complex media. This transition presents numerous challenges ranging from issues such as sensitivity and dynamic range, to autocalibration and antifouling, to enabling multiparameter analyte and biomarker detection from an array of nanosensors within a miniaturized form factor. New materials are required not only to address these challenges, but also to facilitate new manufacturing processes for integrated electrochemical systems. This paper examines the recent advances in the instrumentation, sensor architectures, and sensor materials in the context of developing the next generation of nanoenabled electrochemical sensors for life sciences applications, and identifies the most promising solutions based on selected well established application exemplars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.
FIG. 9.

Similar content being viewed by others

References

  1. E.J. Calvo: Chapter 1 fundamentals. The basics of electrode reactions. In Comprehensive Chemical Kinetics, C.H. Bamford and R.G. Compton, eds. (Elsevier, Amsterdam, The Netherlands, 1986); p. 1.

    Google Scholar 

  2. M. Ciobanu, J.P. Wilburn, M.L. Krim, and D.E. Cliffel: 1-Fundamentals. In Handbook of Electrochemistry, C.G. Zoski, ed. (Elsevier, Amsterdam, The Netherlands2007); p. 3.

    Chapter  Google Scholar 

  3. R.L. William and P.O. Mark: Voltammetry. In Analytical Instrumentation Handbook, 3rd ed., J. Cazes, ed. (CRC Press, Boca Raton, Florida, 2004); p. 529.

    Google Scholar 

  4. J.C. Myland and K.B. Oldham: Uncompensated resistance. 1. The effect of cell geometry. Anal. Chem. 72(17), 3972 (2000).

    Article  CAS  Google Scholar 

  5. J. Wang: Analytical Electrochemistry (John Wiley & Sons, Hoboken, New Jersey, 2006).

    Book  Google Scholar 

  6. M.S. Farash, M. Turkanović, S. Kumari, and M. Hölbl: An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the Internet of Things environment. Ad Hoc Networks 36, 152 (2016).

    Article  Google Scholar 

  7. K. Arshak, K. Twomey, D. Heffernan, and I. Ieee: Development of a novel humidity sensor with error-compensated measurement system. In 2002 23rd International Conference on Microelectronics, Vol. 1, Proceedings (IEEE, Niš, Yugoslavia, 2002); p. 215.

    Google Scholar 

  8. K.I. Arshak and K. Twomey: Investigation into a novel humidity sensor operating at room temperature. Microelectron. J. 33(3), 213 (2002).

    Article  CAS  Google Scholar 

  9. C. Goumopoulos, B. O’Flynn, and A. Kameas: Automated zone-specific irrigation with wireless sensor/actuator network and adaptable decision support. Comput. Electron. Agric. 105, 20 (2014).

    Article  Google Scholar 

  10. V.I. Ogurtsov, K. Twomey, and G. Herzog: Development of an integrated electrochemical sensing system to monitor port water quality using autonomous robotic fish. In Comprehensive Materials Processing, Vol. 13, S. Hashmi, ed. (Elsevier, Amsterdam, The Netherlands, 2014); p. 317.

    Chapter  Google Scholar 

  11. A. Lawlor, J. Torres, B. O’Flynn, J. Wallace, and F. Regan: Deploy: A long term deployment of a water quality sensor monitoring system. Sens. Rev. 32, 29 (2012).

    Article  Google Scholar 

  12. G. Herzog, W. Moujahid, K. Twomey, C. Lyons, and V.I. Ogurtsov: On-chip electrochemical microsystems for measurements of copper and conductivity in artificial seawater. Talanta 116, 26 (2013).

    Article  CAS  Google Scholar 

  13. K. Twomey, E.A. de Eulate, J. Alderman, and D. Arrigan: Fabrication and characterization of a miniaturized planar voltammetric sensor array for use in an electronic tongue. Sens. Actuators, B 140, 532 (2009).

    Article  CAS  Google Scholar 

  14. K. Twomey, L. Nagle, A. Said, F. Barry, and V. Ogurtsov: Characterisation of nanoporous gold for use in a dissolved oxygen sensing application. J. Bionanosci. 5(1), 55 (2015).

    Article  Google Scholar 

  15. C.M. Caffrey, O. Chevalerias, C.O. Mathuna, and K. Twomey: Swallowable-capsule technology. IEEE Pervasive Comput. 7, 23 (2008).

    Article  Google Scholar 

  16. A. Hickling: Studies in electrode polarisation. Part IV.—The automatic control of the potential of a working electrode. Trans. Faraday Soc. 38, 27 (1942).

    Article  CAS  Google Scholar 

  17. C. Mc Caffrey: Development of circuitry and software for a diagnostic swallowable capsule. In Department of Microelectronics and Tyndall National Institute, UCC (University College Cork, Cork, Ireland, 2008); p. 216.

    Google Scholar 

  18. R.F.B. Turner, D.J. Harrison, and H.P. Baltes: A CMOS potentiostat for amperometric chemical sensors. IEEE J. Solid-State Circuits 22, 473 (1987).

    Article  Google Scholar 

  19. R.J. Reay, S.P. Kounaves, and G.T.A. Kovacs: An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation. In Solid-State Circuits Conference, 1994. Digest of Technical Papers. 41st ISSCC, 1994 IEEE International (Editions Frontières, Gif-sur-Yvette, France, 1994); p. 162.

    Google Scholar 

  20. A. Bandyopadhyay, G. Mulliken, G. Cauwenberghs, and N. Thakor: VLSI potentiostat array for distributed electrochemical neural recording. In Circuits and Systems, 2002. ISCAS 2002. IEEE International Symposium on (IEEE, Phoenix-Scottsdale, Arizona, 2002); p. II.

    Google Scholar 

  21. K. Murari, N. Thakor, M. Stanacevic, and G. Cauwenberghs: Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing. In Engineering in Medicine and Biology Society, 2004. IEMBS’ 04. 26th Annual International Conference of the IEEE, Vol. 2 (IEEE, San Francisco, California, 2004); p. 4063.

    Google Scholar 

  22. J. Galandova, G. Ziyatdinova, and J. Labuda: Disposable electrochemical biosensor with multiwalled carbon nanotubes—Chitosan composite layer for the detection of deep DNA damage. Anal. Sci. 2, 711 (2008).

    Article  Google Scholar 

  23. P. Van Gerwen, W. Laureyn, W. Laureys, G. Huyberechts, M. Op De Beeck, K. Baert, J. Suls, W. Sansen, P. Jacobs, L. Hermans, and R. Mertens: Nanoscaled interdigitated electrode arrays for biochemical sensors. Sens. Actuators, B 49, 73–80 (1998).

    Article  Google Scholar 

  24. E. Katz and I. Willner: Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: Routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15, 913–947 (2003).

    Article  CAS  Google Scholar 

  25. L. Moreno-Hagelsieb, B. Foultier, G. Laurent, R. Pampin, J. Remacle, J.P. Raskin, and D. Flandre: Electrical detection of DNA hybridization: Three extraction techniques based on interdigitated Al/Al2O3 capacitors. Biosens. Bioelectron. 22, 2199–2207 (2007).

    Article  CAS  Google Scholar 

  26. J.S. Daniels and N. Pourmand: Label-free impedance biosensors: Opportunities and challenges. Electroanalysis 19, 1239–1257 (2007).

    Article  CAS  Google Scholar 

  27. J.E. Trancik, S. Calabrese Barton, and J. Hone: Transparent and catalytic carbon nanotube films. Nano Lett. 8, 982–987 (2008).

    Article  CAS  Google Scholar 

  28. Y. Yun, R. Gollapudi, V. Shanov, M.J. Schulz, Z. Dong, A. Jazieh, W.R. Heineman, H.B. Halsall, D.K. Wong, A. Bange, Y. Tu, and S. Subramaniam: Carbon nanotubes grown on stainless steel to form plate and probe electrodes for chemical/biological sensing. J. Nanosci. Nanotechnol. 7, 891–897 (2007).

    Article  CAS  Google Scholar 

  29. K.A. Law and S.P.J. Higson: Sonochemically fabricated acetylcholinesterase micro-electrode arrays within a flow injection analyser for the determination of organophosphate pesticides. Biosens. Bioelectron. 20, 1914–1924 (2005).

    Article  CAS  Google Scholar 

  30. Z. Zou, J. Kai, M.J. Rust, J. Han, and C.H. Ahn: Functionalized nano interdigitated electrodes arrays on polymer with integrated microfluidics for direct bio-affinity sensing using impedimetric measurement. Sens. Actuators, A 136, 518–526 (2007).

    Article  CAS  Google Scholar 

  31. E. Moore, O. Rawley, T. Wood, and P. Galvin: Monitoring of cell growth in vitro using biochips packaged with indium tin oxide sensors. Sens. Actuators, B 139, 187–193 (2009).

    Article  CAS  Google Scholar 

  32. L. Ceriotti, A. Kob, S. Drechsler, J. Ponti, E. Thedinga, P. Colpo, R. Ehret, and F. Rossi: Online monitoring of BALB/3T3 metabolism and adhesion with multiparametric chip-based system. Anal. Biochem. 371, 92–104 (2007).

    Article  CAS  Google Scholar 

  33. W. Hu, A.S. Crouch, D. Miller, M. Aryal, and K.J. Luebke: Inhibited cell spreading on polystyrene nanopillars fabricated by nanoimprinting and in situ elongation. Nanotechnology 21, 385301 (2010).

    Article  CAS  Google Scholar 

  34. W. Messina, M. Fitzgerald, and E. Moore: SEM and ECIS investigation of cells cultured on nanopillar modified interdigitated impedance electrodes for analysis of cell growth and cytotoxicity of potential anticancer drugs. Electroanalysis 28, 2188–2195 (2016).

    Article  CAS  Google Scholar 

  35. J. Lee, M.J. Cuddihy, and N.A. Kotov: Three-dimensional cell culture matrices: State of the art. Tissue Eng., Part B 14, 61–86 (2008).

    Article  CAS  Google Scholar 

  36. I.D. Raistrick, D.R. Franceschetti, and J.R. Macdonald: Chapter 2. Theory. In Impedance Spectroscopy; Theory, Experiment, and Applications, 2nd ed., E. Barsoukov and J.R. Macdonald, eds. (Wiley Interscience Publications, Toronto, Canada, 2005); pp. 123–128.

    Google Scholar 

  37. I. Giaever and C.R. Keese: Micromotion of mammalian cells measured electrically. Proc. Natl. Acad. Sci. U. S. A. 88, 7896–7900 (1991).

    Article  CAS  Google Scholar 

  38. J. Wegener, C.R. Keese, and I. Giaever: Electric cell–substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Exp. Cell Res. 259, 158–166 (2000).

    Article  CAS  Google Scholar 

  39. S. Belkin: Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6, 206–212 (2003).

    Article  CAS  Google Scholar 

  40. C.R. Keese, J. Wegener, S.R. Walker, and I. Giaever: Electrical wound-healing assay for cells in vitro. Proc. Natl. Acad. Sci. U. S. A. 101, 1554–1559 (2004).

    Article  CAS  Google Scholar 

  41. S. Arndt, J. Seebach, K. Psathaki, H-J. Galla, and J. Wegener: Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosens. Bioelectron. 19, 583–594 (2004).

    Article  CAS  Google Scholar 

  42. C. Xiao and J.H.T. Luong: Assessment of cytotoxicity by emerging impedance spectroscopy. Toxicol. Appl. Pharmacol. 206, 102–112 (2005).

    Article  CAS  Google Scholar 

  43. D. Opp, B. Wafula, J. Lim, E. Huang, J.C. Lo, and C.M. Lo: Use of electric cell–substrate impedance sensing to assess in vitro cytotoxicity. Biosens. Bioelectron. 24, 2625–2629 (2009).

    Article  CAS  Google Scholar 

  44. C.E. Campbell, M.M. Laane, E. Haugarvoll, and I. Giaever: Monitoring viral-induced cell death using electric cell–substrate impedance sensing. Biosens. Bioelectron. 23, 536–542 (2007).

    Article  CAS  Google Scholar 

  45. W.H. van der Schalie, R.R. James, and T.P. Gargan, II: Selection of a battery of rapid toxicity sensors for drinking water evaluation. Biosens. Bioelectron. 22, 18–27 (2006).

    Article  CAS  Google Scholar 

  46. J. Wang: Electrochemical glucose biosensors. Chem. Rev. 108, 814 (2008).

    Article  CAS  Google Scholar 

  47. A. Heller and B. Feldman: Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 108, 2482 (2008).

    Article  CAS  Google Scholar 

  48. K. Tian, M. Prestgard, and A. Tiwari: A review of recent advances in nonenzymatic glucose sensors. Mater. Sci. Eng., C 41, 100 (2014).

    Article  CAS  Google Scholar 

  49. C. Chen, Q. Xie, D. Yang, H. Xiao, Y. Fu, Y. Tan, and S. Yao: Recent advances in electrochemical glucose biosensors: A review. RSC Adv. 3, 4473 (2013).

    Article  CAS  Google Scholar 

  50. J. Hu: The evolution of commercialized glucose sensors in China. Biosens. Bioelectron. 24(5), 1083 (2009).

    Article  CAS  Google Scholar 

  51. W. Dröge: Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47 (2002).

    Article  Google Scholar 

  52. M.M. Rahman, A.J.S. Ahammad, J-H. Jin, S.J. Ahn, and J-J. Lee: A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 10, 4855 (2010).

    Article  CAS  Google Scholar 

  53. C.I.L. Justino, T.A. Rocha-Santos, A.C. Duarte, and T.A. Rocha-Santos: Review of analytical figures of merit of sensors and biosensors in clinical applications. TrAC, Trends Anal. Chem. 29, 1172 (2010).

    Article  CAS  Google Scholar 

  54. S. Park, H. Boo, and T.D. Chung: Electrochemical non-enzymatic glucose sensors. Anal. Chim. Acta 556(1), 46 (2006).

    Article  CAS  Google Scholar 

  55. K.E. Toghill and R.G. Compton: Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation. Int. J. Electrochem. Sci. 5, 1246 (2010).

    CAS  Google Scholar 

  56. P. Si, Y. Huang, T. Wang, and J. Ma: Nanomaterials for electrochemical non-enzymatic glucose biosensors. RSC Adv. 3, 3487 (2013).

    Article  CAS  Google Scholar 

  57. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15(5), 353 (2003).

    Article  CAS  Google Scholar 

  58. E.P. Lee, J. Chen, Y. Yin, C.T. Campbell, and Y. Xia: Pd-catalyzed growth of Pt nanoparticles or nanowires as dense coatings on polymeric and ceramic particulate supports. Adv. Mater. 18, 3271 (2006).

    Article  CAS  Google Scholar 

  59. Y. Sun and Y. Xia: Large-scale synthesis of uniform silver nanowires through a soft, self-seeding, polyol process. Nature 353, 737 (1991).

    Article  Google Scholar 

  60. T. Hanrath and B.A. Korgel: Supercritical fluid–liquid–solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals. Adv. Mater. 15, 437 (2003).

    Article  CAS  Google Scholar 

  61. Z.L. Wang: Nanowires and Nanobelts: Materials, Properties and Devices. Volume 1: Metal and Semiconductor Nanowires (Springer Science & Business Media, New York, New York, 2013).

    Google Scholar 

  62. V. Anandan, Y.L. Rao, and G. Zhang: Nanopillar array structures for enhancing biosensing performance. Int. J. Nanomed. 1, 73 (2006).

    Article  CAS  Google Scholar 

  63. H. Wang, X. Wang, X. Zhang, X. Qin, Z. Zhao, Z. Miao, N. Huang, and Q. Chen: A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pb nanowires. Biosens. Bioelectron. 25, 142 (2009).

    Article  CAS  Google Scholar 

  64. F. Qu, M. Yang, G. Shen, and R. Yu: Electrochemical biosensing utilizing synergic action of carbon nanotubes and platinum nanowires prepared by template synthesis. Biosens. Bioelectron. 22, 1749 (2007).

    Article  CAS  Google Scholar 

  65. S.M. Choi, J.H. Kim, J.Y. Jung, E.Y. Yoon, and W.B. Kim: Pt nanowires prepared via a polymer template method: Its promise toward high Pt-loaded electrocatalysts for methanol oxidation. Electrochim. Acta 53, 5804 (2008).

    Article  CAS  Google Scholar 

  66. N.S. Birenbaum, B.T. Lai, C.S. Chen, D.H. Reich, and G.J. Meyer: Selective noncovalent adsorption of protein to bifunctional metallic nanowire surfaces. Langmuir 19, 9580 (2003).

    Article  CAS  Google Scholar 

  67. R. Wilson and A. Turner: Glucose oxidase: An ideal enzyme. Biosens. Bioelectron. 7, 165 (1992).

    Article  CAS  Google Scholar 

  68. L. Wang, X. Gao, L. Jin, Q. Wu, Z. Chen, and X. Lin: Amperometric glucose biosensor based on silver nanowires and glucose oxidase. Sens. Actuators, B 176, 9 (2013).

    Article  CAS  Google Scholar 

  69. Y. Lu, M. Yang, F. Qu, G. Shen, and R. Yu: Enzyme-functionalized gold nanowires for the fabrication of biosensors. Bioelectrochemistry 71, 211 (2007).

    Article  CAS  Google Scholar 

  70. M. Delvaux and S. Demoustier-Champagne: Immobilisation of glucose oxidase within metallic nanotubes arrays for application to enzyme biosensors. Biosens. Bioelectron. 18, 943 (2003).

    Article  CAS  Google Scholar 

  71. J.C. Claussen, M.M. Wickner, T.S. Fisher, and D.M. Porterfield: Transforming the fabrication and biofunctionalization of gold nanoelectrode arrays into versatile electrochemical glucose biosensors. ACS Appl. Mater. Interfaces 3, 1765 (2011).

    Article  CAS  Google Scholar 

  72. Z. Wen, S. Ci, and J. Li: Pt nanoparticles inserting in carbon nanotube arrays: Nanocomposites for glucose biosensors. J. Phys. Chem. C 113, 13482 (2009).

    Article  CAS  Google Scholar 

  73. J. Liu, C. Guo, C.M. Li, Y. Li, Q. Chi, X. Huang, L. Liao, and T. Yu: Carbon-decorated ZnO nanowire array: A novel platform for direct electrochemistry of enzymes and biosensing applications. Electrochem. Commun. 11, 202 (2009).

    Article  CAS  Google Scholar 

  74. D. Pradhan, F. Niroui, and K. Leung: High-performance, flexible enzymatic glucose biosensor based on ZnO nanowires supported on a gold-coated polyester substrate. ACS Appl. Mater. Interfaces 2, 2409 (2010).

    Article  CAS  Google Scholar 

  75. C-W. Hsu and G-J. Wang: Highly sensitive glucose biosensor based on Au–Ni coaxial nanorod array having high aspect ratio. Biosens. Bioelectron. 56, 204 (2014).

    Article  CAS  Google Scholar 

  76. X. Yang, Y. Wang, Y. Liu, and X. Jiang: A sensitive hydrogen peroxide and glucose biosensor based on gold/silver core–shell nanorods. Electrochim. Acta 108, 39 (2013).

    Article  CAS  Google Scholar 

  77. Z. Yang, Y. Tang, J. Li, Y. Zhang, and X. Hu: Facile synthesis of tetragonal columnar-shaped TiO2 nanorods for the construction of sensitive electrochemical glucose biosensor. Biosens. Bioelectron. 54, 528 (2014).

    Article  CAS  Google Scholar 

  78. Y. Xie and W. Wang: Bioelectrocatalytic performance of glucose oxidase/nitrogen-doped titania nanotube array enzyme electrode. J. Chem. Technol. Biotechnol. 91, 1403 (2015).

    Article  CAS  Google Scholar 

  79. K. Qu, P. Shi, J. Ren, and X. Qu: Nanocomposite incorporating V2O5 nanowires and gold nanoparticles for mimicking an enzyme cascade reaction and its application in the detection of biomolecules. Chem.–Eur. J. 20, 7501 (2014).

    Article  CAS  Google Scholar 

  80. Y. Wei, Y. Li, X. Liu, Y. Xian, G. Shi, and L. Jin: ZnO nanorods/Au hybrid nanocomposites for glucose biosensor. Biosens. Bioelectron. 26, 275 (2010).

    Article  CAS  Google Scholar 

  81. X. Liu, Q. Hu, Q. Wu, W. Zhang, Z. Fang, and Q. Xie: Aligned ZnO nanorods: A useful film to fabricate amperometric glucose biosensor. Colloids Surf., B 74, 154 (2009).

    Article  CAS  Google Scholar 

  82. K. Yang, G-W. She, H. Wang, X-M. Ou, X-H. Zhang, C-S. Lee, and S-T. Lee: ZnO nanotube arrays as biosensors for glucose. J. Phys. Chem. C 113, 20169 (2009).

    Article  CAS  Google Scholar 

  83. J. Zang, C.M. Li, X. Cui, J. Wang, X. Sun, H. Dong, and C.Q. Sun: Tailoring zinc oxide nanowires for high performance amperometric glucose sensor. Electroanalysis 19, 1008 (2007).

    Article  CAS  Google Scholar 

  84. X. Jia, G. Hu, F. Nitze, H.R. Barzegar, T. Sharifi, C-W. Tai, and T. Wågberg: Synthesis of palladium/helical carbon nanofiber hybrid nanostructures and their application for hydrogen peroxide and glucose detection. ACS Appl. Mater. Interfaces 5, 12017 (2013).

    Article  CAS  Google Scholar 

  85. D. Patil, N.Q. Dung, H. Jung, S.Y. Ahn, D.M. Jang, and D. Kim: Enzymatic glucose biosensor based on CeO2 nanorods synthesized by non-isothermal precipitation. Biosens. Bioelectron. 31, 176 (2012).

    Article  CAS  Google Scholar 

  86. Z. Wang, S. Liu, P. Wu, and C. Cai: Detection of glucose based on direct electron transfer reaction of glucose oxidase immobilized on highly ordered polyaniline nanotubes. Anal. Chem. 81, 1638 (2009).

    Article  CAS  Google Scholar 

  87. K.K. Lee, P.Y. Loh, C.H. Sow, and W.S. Chin: CoOOH nanosheets on cobalt substrate as a non-enzymatic glucose sensor. Electrochem. Commun. 20, 128 (2012).

    Article  CAS  Google Scholar 

  88. L. Yang, Y. Zhang, M. Chu, W. Deng, Y. Tan, M. Ma, X. Su, Q. Xie, and S. Yao: Facile fabrication of network film electrodes with ultrathin Au nanowires for nonenzymatic glucose sensing and glucose/O2 fuel cell. Biosens. Bioelectron. 52, 105 (2014).

    Article  CAS  Google Scholar 

  89. S. Cherevko and C-H. Chung: Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sens. Actuators, B 142, 216 (2009).

    Article  CAS  Google Scholar 

  90. Y. Zhao, J. Chu, S.H. Li, W.W. Li, G. Liu, Y.C. Tian, and H.Q. Yu: Non-enzymatic electrochemical detection of glucose with a gold nanowire array electrode. Electroanalysis 26, 656 (2014).

    Article  CAS  Google Scholar 

  91. Y. Bai, Y. Sun, and C. Sun: Pt–Pb nanowire array electrode for enzyme-free glucose detection. Biosens. Bioelectron. 24, 579 (2008).

    Article  CAS  Google Scholar 

  92. S.S. Mahshid, S. Mahshid, A. Dolati, M. Ghorbani, L. Yang, S. Luo, and Q. Cai: Template-based electrodeposition of Pt/Ni nanowires and its catalytic activity towards glucose oxidation. Electrochim. Acta 58, 551 (2011).

    Article  CAS  Google Scholar 

  93. J. Yuan, K. Wang, and X. Xia: Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv. Funct. Mater. 15, 803 (2005).

    Article  CAS  Google Scholar 

  94. Y. Li, X. Niu, J. Tang, M. Lan, and H. Zhao: A comparative study of nonenzymatic electrochemical glucose sensors based on Pt–Pd nanotube and nanowire arrays. Electrochim. Acta 130, 1 (2014).

    Article  CAS  Google Scholar 

  95. L-M. Lu, L. Zhang, F-L. Qu, H-X. Lu, X-B. Zhang, Z-S. Wu, S-Y. Huan, Q-A. Wang, G-L. Shen, and R-Q. Yu: A nano-Ni based ultrasensitive nonenzymatic electrochemical sensor for glucose: Enhancing sensitivity through a nanowire array strategy. Biosens. Bioelectron. 25, 218 (2009).

    Article  CAS  Google Scholar 

  96. M. Jamal, M. Hasan, A. Mathewson, and K.M. Razeeb: Disposable sensor based on enzyme-free Ni nanowire array electrode to detect glutamate. Biosens. Bioelectron. 40, 213 (2013).

    Article  CAS  Google Scholar 

  97. M. Jamal, M. Hasan, M. Schmidt, N. Petkov, A. Mathewson, and K.M. Razeeb: Shell@core coaxial NiO@Ni nanowire arrays as high performance enzymeless glucose sensor. J. Electrochem. Soc. 160, B207 (2013).

    Article  CAS  Google Scholar 

  98. R.K. Shervedani, M. Karevan, and A. Amini: Prickly nickel nanowires grown on Cu substrate as a supersensitive enzyme-free electrochemical glucose sensor. Sens. Actuators, B 204, 783 (2014).

    Article  CAS  Google Scholar 

  99. Y. Zhang, L. Su, D. Manuzzi, H.V.E. de los Monteros, W. Jia, D. Huo, C. Hou, and Y. Lei: Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens. Bioelectron. 31, 426 (2012).

    Article  CAS  Google Scholar 

  100. Z.D. Gao, J. Guo, N.K. Shrestha, R. Hahn, Y.Y. Song, and P. Schmuki: Nickel hydroxide nanoparticle activated semi-metallic TiO2 nanotube arrays for non-enzymatic glucose sensing. Chem.–Eur. J. 19, 15530 (2013).

    Article  CAS  Google Scholar 

  101. K. Huo, Y. Li, R. Chen, B. Gao, C. Peng, W. Zhang, L. Hu, X. Zhang, and P.K. Chu: Recyclable non-enzymatic glucose sensor based on Ni/NiTiO3/TiO2 nanotube arrays. ChemPlusChem 80, 576 (2015).

    Article  CAS  Google Scholar 

  102. C. Wang, L. Yin, L. Zhang, and R. Gao: Ti/TiO2 nanotube array/Ni composite electrodes for nonenzymatic amperometric glucose sensing. J. Phys. Chem. C 114, 4408 (2010).

    Article  CAS  Google Scholar 

  103. R. Ding, J. Liu, J. Jiang, J. Zhu, and X. Huang: Mixed Ni–Cu-oxide nanowire array on conductive substrate and its application as enzyme-free glucose sensor. Anal. Methods 4, 4003 (2012).

    Article  CAS  Google Scholar 

  104. M. Long, L. Tan, H. Liu, Z. He, and A. Tang: Novel helical TiO2 nanotube arrays modified by Cu2O for enzyme-free glucose oxidation. Biosens. Bioelectron. 59, 243 (2014).

    Article  CAS  Google Scholar 

  105. S. Yu, X. Peng, G. Cao, M. Zhou, L. Qiao, J. Yao, and H. He: Ni nanoparticles decorated titania nanotube arrays as efficient nonenzymatic glucose sensor. Electrochim. Acta 76, 512 (2012).

    Article  CAS  Google Scholar 

  106. J. Huang, Y. Zhu, X. Yang, W. Chen, Y. Zhou, and C. Li: Flexible 3D porous CuO nanowire arrays for enzymeless glucose sensing: In situ engineered versus ex situ piled. Nanoscale 7, 559 (2015).

    Article  CAS  Google Scholar 

  107. J. Wang, W. Bao, and L. Zhang: A nonenzymatic glucose sensing platform based on Ni nanowire modified electrode. Anal. Methods 4, 4009 (2012).

    Article  CAS  Google Scholar 

  108. X. Cao and N. Wang: A novel non-enzymatic glucose sensor modified with Fe2O3 nanowire arrays. Analyst 136, 4241 (2011).

    Article  CAS  Google Scholar 

  109. Z. Zhuang, X. Su, H. Yuan, Q. Sun, D. Xiao, and M.M. Choi: An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode. Analyst 133, 126 (2008).

    Article  CAS  Google Scholar 

  110. E.A. Mazzio and K.F. Soliman: Glioma cell antioxidant capacity relative to reactive oxygen species produced by dopamine. J. Appl. Toxicol. 24, 99 (2004).

    Article  CAS  Google Scholar 

  111. Y. Komazaki, T. Inoue, and S. Tanaka: Automated measurement system for H2O2 in the atmosphere by diffusion scrubber sampling and HPLC analysis of Ti(IV)–PAR–H2O2 complex. Analyst 126, 587 (2001).

    Article  CAS  Google Scholar 

  112. X. Shu, Y. Chen, H. Yuan, S. Gao, and D. Xiao: H2O2 sensor based on the room-temperature phosphorescence of nano TiO2/SiO2 composite. Anal. Chem. 79, 3695 (2007).

    Article  CAS  Google Scholar 

  113. F. Wang, X. Liu, C-H. Lu, and I. Willner: Cysteine-mediated aggregation of Au nanoparticles: The development of a H2O2 sensor and oxidase-based biosensors. ACS Nano 7, 7278 (2013).

    Article  CAS  Google Scholar 

  114. W.H. Hsiao, H.Y. Chen, T.M. Cheng, T.K. Huang, Y.L. Chen, C.Y. Lee, and H.T. Chi: Urchin-like Ag nanowires as non-enzymatic hydrogen peroxide sensor. J. Chin. Chem. Soc. 59, 500 (2012).

    Article  CAS  Google Scholar 

  115. E. Kurowska, A. Brzózka, M. Jarosz, G. Sulka, and M. Jaskuła: Silver nanowire array sensor for sensitive and rapid detection of H2O2. Electrochim. Acta 104, 439 (2013).

    Article  CAS  Google Scholar 

  116. Y. Li, L. Zu, G. Liu, Y. Qin, D. Shi, and J. Yang: Nanospherical surface-supported seeded growth of Au nanowires: Investigation on a new growth mechanism and high-performance hydrogen peroxide sensors. Part. Part. Syst. Charact. 32, 498 (2015).

    Article  CAS  Google Scholar 

  117. M. Jamal, M. Hasan, A. Mathewson, and K.M. Razeeb: Non-enzymatic and highly sensitive H2O2 sensor based on Pd nanoparticle modified gold nanowire array electrode. J. Electrochem. Soc. 159, B825 (2012).

    Article  CAS  Google Scholar 

  118. J. Huang, Y. Zhu, H. Zhong, X. Yang, and C. Li: Dispersed CuO nanoparticles on a silicon nanowire for improved performance of nonenzymatic H2O2 detection. ACS Appl. Mater. Interfaces 6, 7055 (2014).

    Article  CAS  Google Scholar 

  119. J. Xu, F. Shang, J.H. Luong, K.M. Razeeb, and J.D. Glennon: Direct electrochemistry of horseradish peroxidase immobilized on a monolayer modified nanowire array electrode. Biosens. Bioelectron. 25, 1313 (2010).

    Article  CAS  Google Scholar 

  120. W. Bai, J. Zheng, and Q. Sheng: A non-enzymatic hydrogen peroxide sensor based on Ag/MnOOH nanocomposites. Electroanalysis 25, 2305 (2013).

    Article  CAS  Google Scholar 

  121. F. Meng, X. Yan, J. Liu, J. Gu, and Z. Zou: Nanoporous gold as non-enzymatic sensor for hydrogen peroxide. Electrochim. Acta 56, 4657 (2011).

    Article  CAS  Google Scholar 

  122. L. Wang, M. Deng, G. Ding, S. Chen, and F. Xu: Manganese dioxide based ternary nanocomposite for catalytic reduction and nonenzymatic sensing of hydrogen peroxide. Electrochim. Acta 114, 416 (2013).

    Article  CAS  Google Scholar 

  123. S. Su, X. Wei, Y. Guo, Y. Zhong, Y. Su, Q. Huang, C. Fan, and Y. He: A silicon nanowire-based electrochemical sensor with high sensitivity and electrocatalytic activity. Part. Part. Syst. Charact. 30, 326 (2013).

    Article  CAS  Google Scholar 

  124. X. Pang, D. He, S. Luo, and Q. Cai: An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite. Sens. Actuators, B 137, 134 (2009).

    Article  CAS  Google Scholar 

  125. Q. Kang, L. Yang, and Q. Cai: An electro-catalytic biosensor fabricated with Pt–Au nanoparticle-decorated titania nanotube array. Bioelectrochemistry 74, 62 (2008).

    Article  CAS  Google Scholar 

  126. B.X. Gu, C.X. Xu, G.P. Zhu, S.Q. Liu, L.Y. Chen, M.L. Wang, and J.J. Zhu: Layer by layer immobilized horseradish peroxidase on zinc oxide nanorods for biosensing. J. Phys. Chem. B 113, 6553 (2009).

    Article  CAS  Google Scholar 

  127. A.K.M. Kafi, G. Wu, and A. Chen: A novel hydrogen peroxide biosensor based on the immobilization of horseradish peroxidase onto Au-modified titanium dioxide nanotube arrays. Biosens. Bioelectron. 24, 566 (2008).

    Article  CAS  Google Scholar 

  128. L. Li, J. Huang, T. Wang, H. Zhang, Y. Liu, and J. Li: An excellent enzyme biosensor based on Sb-doped SnO2 nanowires. Biosens. Bioelectron. 25, 2436 (2010).

    Article  CAS  Google Scholar 

  129. H.W. Pickering and P.R. Swann: Electron metallography of chemical attack upon some alloys susceptible to stress corrosion cracking. Corrosion 19, 373 (1963).

    Article  Google Scholar 

  130. H.W. Pickering and C. Wagner: Electrolytic dissolution of binary alloys containing a noble metal. J. Electrochem. Soc. 698, 114 (1967).

    Google Scholar 

  131. A.J. Forty: Corrosion micromorphology of noble metal alloys and depletion gilding. Nature 282, 597 (1979).

    Article  CAS  Google Scholar 

  132. A. Wittstock, V. Zielasek, J. Biener, C.M. Friend, and M. Bäumer: Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327, 319 (2010).

    Article  CAS  Google Scholar 

  133. K. Sieradzki, N. Dimitrov, D. Movrin, C. McCall, N. Vasiljevic, and J. Erlebacher: The dealloying critical potential. J. Electrochem. Soc. 149, B370 (2002).

    Article  CAS  Google Scholar 

  134. J. Snyder, K. Livi, and J. Erlebacher: Dealloying silver/gold alloys in neutral silver nitrate solution: Porosity evolution, surface composition, and surface oxides. J. Electrochem. Soc. 155, C464 (2008).

    Article  CAS  Google Scholar 

  135. J. Erlebacher: An atomistic description of dealloying porosity evolution, the critical potential, and rate-limiting behavior. J. Electrochem. Soc. 151, C614 (2004).

    Article  CAS  Google Scholar 

  136. J. Snyder and J. Erlebacher: Kinetics of crystal etching limited by terrace dissolution. J. Electrochem. Soc. 157, C125 (2010).

    Article  CAS  Google Scholar 

  137. T. Fujita, P. Guan, K. McKenna, X. Lang, A. Hirata, L. Zhang, T. Tokunaga, S. Arai, Y. Yamamoto, N. Tanaka, Y. Ishikawa, N. Asao, Y. Yamamoto, J. Erlebacher, and M. Chen: Atomic origins of the high catalytic activity of nanoporous gold. Nat. Mater. 11, 775 (2012).

    Article  CAS  Google Scholar 

  138. J. Snyder, P. Asanithi, A.B. Dalton, and J. Erlebacher: Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv. Mater. 20, 4883 (2008).

    Article  CAS  Google Scholar 

  139. M. Hakamada and M. Mabuchi: Mechanical strength of nanoporous gold fabricated by dealloying. Scr. Mater. 56, 1003 (2007).

    Article  CAS  Google Scholar 

  140. R. Morrish, K. Dorame, and A.J. Muscat: Formation of nanoporous Au by dealloying AuCu thin films in HNO3. Scr. Mater. 64, 856 (2011).

    Article  CAS  Google Scholar 

  141. L.H. Qian and M.W. Chen: Ultrafine nanoporous gold by low-temperature dealloying and kinetics of nanopore formation. Appl. Phys. Lett. 91, 083105 (2007).

    Article  CAS  Google Scholar 

  142. Y. Ding, Y.J. Kim, and J. Erlebacher: Nanoporous gold leaf: “Ancient technology”/advanced material. Adv. Mater. 16, 1897 (2004).

    Article  CAS  Google Scholar 

  143. J. Biener, A.M. Hodge, J.R. Hayes, C.A. Volkert, L.A. Zepeda-Ruiz, A.V. Hamza, and F.F. Abraham: Size effects on the mechanical behavior of nanoporous Au. Nano Lett. 6, 2379 (2006).

    Article  CAS  Google Scholar 

  144. E. Detsi, S. Punzhin, J. Rao, P.R. Onck, and J.T.M. De Hosson: Enhanced strain in functional nanoporous gold with a dual microscopic length scale structure. ACS Nano 6, 3734 (2012).

    Article  CAS  Google Scholar 

  145. H. Oppermann and L. Dietrich: Nanoporous gold bumps for low temperature bonding. Microelectron. Reliab. 52, 356 (2012).

    Article  CAS  Google Scholar 

  146. V. Zielasek, B. Jürgens, C. Schulz, J. Biener, M.M. Biener, A.V. Hamza, and M. Bäumer: Gold catalysts: Nanoporous gold foams. Angew. Chem., Int. Ed. 45, 8241 (2006).

    Article  CAS  Google Scholar 

  147. G. Pattrick, E. van der Lingen, C.W. Corti, R.J. Holliday, and D.T. Thompson: The potential for use of gold in automotive pollution control technologies: A short review. Top. Catal. 30–31, 273 (2004).

    Article  Google Scholar 

  148. T.V. Choudhary and D.W. Goodman: Catalytically active gold: The role of cluster morphology. Appl. Catal., A 291, 32 (2005).

    Article  CAS  Google Scholar 

  149. G.J. Hutchings: Vapour phase hydrochlorination of acetylene: Correlation of catalytic activity of supported metal catalysts. J. Catal. 96, 292 (1985).

    Article  CAS  Google Scholar 

  150. M. Haruta, T. Kobayashi, H. Sano, and N. Yamada: Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 16, 405 (1987).

    Article  Google Scholar 

  151. C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian, and Y. Ding: Low temperature CO oxidation over unsupported nanoporous gold. J. Am. Chem. Soc. 129, 42 (2007).

    Article  CAS  Google Scholar 

  152. R. Zeis, T. Lei, K. Sieradzki, J. Snyder, and J. Erlebacher: Low temperature CO oxidation over unsupported nanoporous gold. J. Catal. 253, 132 (2008).

    Article  CAS  Google Scholar 

  153. J. Zhang, P. Liu, H. Ma, and Y. Ding: Nanostructured porous gold for methanol electro-oxidation. J. Phys. Chem. C 111, 10382 (2007).

    Article  CAS  Google Scholar 

  154. Y. Deng, W. Huang, X. Chen, and Z. Li: Facile fabrication of nanoporous gold film electrodes. Electrochem. Commun. 10, 810 (2008).

    Article  CAS  Google Scholar 

  155. L.C. Nagle and J.F. Rohan: Nanoporous gold catalyst for direct ammonia borane fuel cells. J. Electrochem. Soc. 158, B772 (2011).

    Article  CAS  Google Scholar 

  156. L.C. Nagle and J.F. Rohan: Nanoporous gold anode catalyst for direct borohydride fuel cell. Int. J. Hydrogen Energy 36, 10319 (2011).

    Article  CAS  Google Scholar 

  157. X. Yan, F. Meng, S. Cui, J. Liu, J. Gu, and Z. Zou: Effective and rapid electrochemical detection of hydrazine by nanoporous gold. J. Electroanal. Chem. 44, 661 (2011).

    Google Scholar 

  158. B.K. Jena and C.R. Raj: Ultrasensitive nanostructured platform for the electrochemical sensing of hydrazine. J. Phys. Chem. C 111, 6228 (2007).

    Article  CAS  Google Scholar 

  159. F. Meng, X. Yan, J. Liu, J. Gu, and Z. Zou: Nanoporous gold as non-enzymatic sensor for hydrogen peroxide. Electrochim. Acta 56, 4657 (2011).

    Article  CAS  Google Scholar 

  160. K. Twomey, L.C. Nagle, A. Said, F. Barry, and V.I. Ogurtsov: Characterisation of nanoporous gold for use in a dissolved oxygen sensing application. BioNanoScience 5, 55 (2015).

    Article  Google Scholar 

  161. N.A. Mohd Said, V.I. Ogurtsov, K. Twomey, L.C. Nagle, and G. Herzog: Chemically modified electrodes for recessed microelectrode array. Procedia Chem. 20, 12 (2016).

    Article  CAS  Google Scholar 

  162. C.A.R. Chapman, H. Chen, M. Stamou, J. Biener, M.M. Biener, P.J. Lein, and E. Seker: Nanoporous gold as a neural interface coating: Effects of topography, surface chemistry, and feature size. ACS Appl. Mater. Interfaces 7, 7093 (2015).

    Article  CAS  Google Scholar 

  163. D.V. Pugh, A. Dursun, and S.G. Corcoran: Formation of nanoporous platinum by selective dissolution of Cu from Cu0.75 Pt0.25. J. Mater. Res. 18, 216 (2003).

    Article  CAS  Google Scholar 

  164. L-Y. Chen, J-S. Yu, T. Fujita, and M-W. Chen: Nanoporous copper with tunable nanoporosity for SERS applications. Adv. Funct. Mater. 19, 1221 (2009).

    Article  CAS  Google Scholar 

  165. M. Hakamada, J. Motomura, F. Hirashima, and M. Mabuchi: Preparation of nanoporous ruthenium catalyst and its CO oxidation characteristics. Mater. Trans. 53, 524 (2012).

    Article  CAS  Google Scholar 

  166. Q. Chen and K. Sieradzki: Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nat. Mater. 12, 1102 (2013).

    Article  CAS  Google Scholar 

  167. P. Vazquez, G. Herzog, C. O’Mahony, J. O’Brien, J. Scully, A. Blake, C. O’Mathuna, and P. Galvin: Microscopic gel–liquid interfaces supported by hollow microneedle array for voltammetric drug detection. Sens. Actuators, B 201, 572 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge financial support from Science Foundation Ireland, Enterprise Ireland, European Commission FP6, FP7 and H2020 Programmes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Galvin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galvin, P., Padmanathan, N., Razeeb, K.M. et al. Nanoenabling electrochemical sensors for life sciences applications. Journal of Materials Research 32, 2883–2904 (2017). https://doi.org/10.1557/jmr.2017.290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.290

Navigation