Skip to main content
Log in

New epitaxy paradigm in epitaxial self-assembled oxide vertically aligned nanocomposite thin films

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Self-assembled oxide-based vertically aligned nanocomposite (VAN) thin films have aroused tremendous research interest in the past decade. The interest arises from the range of unique nanostructured films which can form and the multifunctionality arising from these forms. Hence, a large number of oxide VAN systems have been demonstrated and explored for enhancing specific physical properties, such as strain-enhanced ferroelectricity, tunable magnetotransport, and novel electrical/ionic transport properties. The epitaxial growth of the nanocomposite thin films and the coupling at the heterogeneous interfaces are critical considerations for future device applications. In this review, the advantages of strain coupling along vertical interfaces and film-substrate interfaces in nanocomposite films over conventional single phase films are discussed. Specifically, a unique strain compensation model enabling the epitaxial growth of two-phase nanocomposites having large lattice mismatch with substrates is proposed. Out-of-plane strain coupling between the two phases is also discussed in terms of designing strain states for desired functionalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. S. Wu, S.A. Cybart, P. Yu, M. Rossell, J. Zhang, R. Ramesh, and R. Dynes: Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9, 756 (2010).

    Article  CAS  Google Scholar 

  2. W. Zhang, R. Ramesh, J.L. MacManus-Driscoll, and H. Wang: Multifunctional, self-assembled oxide nanocomposite thin films and devices. MRS Bull. 40, 736 (2015).

    Article  Google Scholar 

  3. H.Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura: Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103 (2012).

    Article  CAS  Google Scholar 

  4. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh: Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303 (5658), 661 (2004).

    Article  CAS  Google Scholar 

  5. W. Eerenstein, N.D. Mathur, and J.F. Scott: Multiferroic and magnetoelectric materials. Nature 442, 759 (2006).

    Article  CAS  Google Scholar 

  6. S-W. Cheong and M. Mostovoy: Multiferroics: A magnetic twist for ferroelectricity. Nat. Mater. 6, 13 (2007).

    Article  CAS  Google Scholar 

  7. J. Huang, C. Tsai, L. Chen, J. Jian, K. Yu, W. Zhang, and H. Wang: Enhanced flux pinning properties in YBa2Cu3O7 δ/(CoFe2O4)0 . 3(CeO2)0 . 7 multilayer thin films. IEEE Trans. Appl. Supercond. 25 (3), 7500404 (2015).

    Google Scholar 

  8. K.J. Choi, M. Biegalski, Y.L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y.B. Chen, X.Q. Pan, V. Gopalan, L-Q. Chen, D.G. Schlom, and C.B. Eom: Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005 (2004).

    Article  CAS  Google Scholar 

  9. J. Huang, L. Chen, J. Jian, F. Khatkhatay, and H. Wang: Nanostructured pinning centers in FeSe0.1Te0.9 thin films for enhanced superconducting properties. Supercond. Sci. Technol. 27, 105006 (2014).

    Article  CAS  Google Scholar 

  10. J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, and D.G. Schlom: Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758 (2004).

    Article  CAS  Google Scholar 

  11. Y. Ni, W. Rao, and A.G. Khachaturyan: Pseudospinodal mode of decomposition in films and formation of chessboard-like nanostructure. Nano Lett. 9, 3275 (2009).

    Article  CAS  Google Scholar 

  12. J.L. MacManus-Driscoll, A. Suwardi, and H. Wang: Composite epitaxial thin films: A new platform for tuning, probing, and exploiting mesoscale oxides. MRS Bull. 40, 933 (2015).

    Article  CAS  Google Scholar 

  13. J.L. MacManus-Driscoll, P. Zerrer, H. Wang, H. Yang, J. Yoon, A. Fouchet, R. Yu, M.G. Blamire, and Q. Jia: Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314 (2008).

    Article  CAS  Google Scholar 

  14. V. Moshnyaga, B. Damaschke, O. Shapoval, A. Belenchuk, J. Faupel, O.I. Lebedev, J. Verbeeck, G. Van Tendeloo, M. Mücksch, V. Tsurkan, R. Tidecks, and K. Samwer: Structural phase transition and stress accommodation in (La0.7Ca0.3MnO3)1−x:(MgO)x composite films. Phys. Rev. B: Condens. Matter Mater. Phys. 66, 104421 (2002).

    Article  CAS  Google Scholar 

  15. C. Tsai, J. Huang, J. Lee, F. Khatkhatay, L. Chen, A. Chen, Q. Su, and H. Wang: Tunable flux pinning landscapes achieved by functional ferromagnetic Fe2O3:CeO2 vertically aligned nanocomposites in YBa2Cu3O7−δ thin films. Physica C 510, 13 (2015).

    Article  CAS  Google Scholar 

  16. A. Chen, Z. Bi, Q. Jia, J.L. MacManus-Driscoll, and H. Wang: Microstructure, vertical strain control and tunable functionalities in self-assembled, vertically aligned nanocomposite thin films. Acta Mater. 61, 2783 (2013).

    Article  CAS  Google Scholar 

  17. W. Zhang, A. Chen, Z. Bi, Q. Jia, J.L. MacManus-Driscoll, and H. Wang: Interfacial coupling in heteroepitaxial vertically aligned nanocomposite thin films: From lateral to vertical control. Curr. Opin. Solid State Mater. Sci. 18, 6 (2014).

    Article  CAS  Google Scholar 

  18. J. Huang, L. Chen, J. Jian, K. Tyler, L. Li, H. Wang, and H. Wang: Magnetic (CoFe2O4)0.1(CeO2)0.9 nanocomposite as effective pinning centers in FeSe0.1Te0.9 thin films. J. Phys.: Condens. Matter 28, 025702 (2016).

    Google Scholar 

  19. J.L. MacManus-Driscoll: Self-assembled heteroepitaxial oxide nanocomposite thin film structures: Designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035 (2010).

    Article  CAS  Google Scholar 

  20. I. Levin, J. Li, J. Slutsker, and A.L. Roytburd: Design of self-assembled multiferroic nanostructures in epitaxial films. Adv. Mater. 18 (15), 2044 (2006).

    Article  CAS  Google Scholar 

  21. D.H. Kim, N.M. Aimon, X. Sun, and C.A. Ross: Integration of self-assembled epitaxial BiFeO3–CoFe2O4 multiferroic nanocomposites on silicon substrates. Adv. Funct. Mater. 24 (16), 2334 (2014).

    Article  CAS  Google Scholar 

  22. Y. Zhu, P. Liu, R. Yu, Y. Hsieh, D. Ke, Y. Chu, and Q. Zhan: Orientation-tuning in self-assembled heterostructures induced by a buffer layer. Nanoscale 6, 5126 (2014).

    Article  CAS  Google Scholar 

  23. A. Chen, M. Weigand, Z. Bi, W. Zhang, X. Lu, P. Dowden, J.L. MacManus-Driscoll, H. Wang, and Q. Jia: Evolution of microstructure, strain and physical properties in oxide nanocomposite films. Sci. Rep. 4, 5426 (2014).

    Article  CAS  Google Scholar 

  24. A. Chen, Z. Bi, C. Tsai, J. Lee, Q. Su, X. Zhang, Q. Jia, J.L. MacManus-Driscoll, and H. Wang: Tunable low-field magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater. 21, 2423 (2011).

    Article  CAS  Google Scholar 

  25. W. Zhang, L. Li, P. Lu, M. Fan, Q. Su, F. Khatkhatay, A. Chen, Q. Jia, X. Zhang, J.L. MacManus-Driscoll, and H. Wang: Integration of self-assembled vertically aligned nanocomposite (La0.7Sr0.3MnO3)1−x:(ZnO)x thin films on silicon substrates. ACS Appl. Mater. Interfaces 7, 21646 (2015).

    Article  CAS  Google Scholar 

  26. B.S. Kang, H. Wang, J.L. MacManus-Driscoll, Y. Li, Q. Jia, I. Mihut, and J.B. Betts: Low field magnetotransport properties of (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 nanocomposite films. Appl. Phys. Lett. 88, 192514 (2006).

    Article  CAS  Google Scholar 

  27. J. Lloyd-Hughes, C.D.W. Mosley, S.P.P. Jones, M.R. Lees, A. Chen, Q.X. Jia, E-M. Choi, and J.L. MacManus-Driscoll: Colossal terahertz magnetoresistance at room temperature in epitaxial La0.7Sr0.3MnO3 nanocomposites and single-phase thin films. Nano Lett. 17, 2506 (2017).

    Article  CAS  Google Scholar 

  28. Q. Su, D. Yoon, A. Chen, F. Khatkhatay, A. Manthiram, and H. Wang: Vertically aligned nanocomposite electrolytes with superior out-of-plane ionic conductivity for solid oxide fuel cells. J. Power Sources 242, 455 (2013).

    Article  CAS  Google Scholar 

  29. J. Yoon, S. Cho, J.H. Kim, J.H. Lee, Z. Bi, A. Serquis, X. Zhang, A. Manthiram, and H. Wang: Vertically aligned nanocomposite thin films as a cathode-electrolyte interface layer for thin film solid oxide fuel cells. Adv. Funct. Mater. 19, 3868 (2009).

    Article  CAS  Google Scholar 

  30. S. Lee, W. Zhang, F. Khatkhatay, Q. Jia, H. Wang, and J.L. MacManus-Driscoll: Strain tuning and strong enhancement of ionic conductivity in SrZrO3–RE2O3 (RE = Sm, Eu, Gd, Dy, and Er) nanocomposite films. Adv. Funct. Mater. 25 (27), 4328 (2015).

    Article  CAS  Google Scholar 

  31. S. Lee and J.L. MacManus-Driscoll: Fast and tunable nanoionics in vertically aligned nanostructured films. APL Mater. 5, 042304 (2017).

    Article  CAS  Google Scholar 

  32. W. Zhang, A. Chen, J. Jian, Y. Zhu, L. Chen, P. Lu, Q. Jia, J.L. MacManus-Driscoll, X. Zhang, and H. Wang: Strong perpendicular exchange bias in epitaxial La0.7Sr0.3MnO3:BiFeO3 nanocomposite films through vertical interfacial coupling. Nanoscale 7, 13808 (2015).

    Article  CAS  Google Scholar 

  33. M. Fan, W. Zhang, J. Jian, J. Huang, and H. Wang: Strong perpendicular exchange bias in epitaxial La0.7Sr0.3MnO3:LaFeO3 nanocomposite thin films. APL Mater. 4, 076105 (2016).

    Article  CAS  Google Scholar 

  34. E. Weal, S. Patnaik, Z. Bi, H. Wang, T. Fix, A. Kursumovic, and J.L. MacManus-Driscoll: Coexistence of strong ferromagnetism and polar switching at room temperature in Fe3O4–BiFeO3 nanocomposite thin films. Appl. Phys. Lett. 97, 153121 (2010).

    Article  CAS  Google Scholar 

  35. E. Choi, E. Weal, Z. Bi, H. Wang, A. Kursumovic, T. Fix, M.G. Blamire, and J.L. MacManus-Driscoll: Strong room temperature exchange bias in self-assembled BiFeO3–Fe3O4 nanocomposite heteroepitaxial films. Appl. Phys. Lett. 102, 012905 (2013).

    Article  CAS  Google Scholar 

  36. Y. Hsieh, E. Strelcov, J. Liou, C. Shen, Y. Chen, S.V. Kalinin, and Y. Chu: Electrical modulation of the local conduction at oxide tubular interfaces. ACS Nano 7 (10), 8627 (2013).

    Article  CAS  Google Scholar 

  37. Y. Hsieh, J. Liou, B. Huang, C. Liang, Q. He, Q. Zhan, Y. Chiu, Y. Chen, and Y. Chu: Local conduction at the BiFeO3–CoFe2O4 tubular oxide interface. Adv. Mater. 24, 4564 (2012).

    Article  CAS  Google Scholar 

  38. H. Yamada, Y. Ogawa, Y. Ishii, H. Sato, M. Kawasaki, H. Akoh, and Y. Tokura: Engineered interface of magnetic oxides. Science 305, 646 (2004).

    Article  CAS  Google Scholar 

  39. E. Bousquet, M. Dawber, N. Stucki, C. Lichtensteiger, P. Hermet, S. Gariglio, J.M. Triscone, and P. Ghosez: Improper ferroelectricity in perovskite oxide artificial superlattices. Nature 452, 732 (2008).

    Article  CAS  Google Scholar 

  40. J. Mannhart and D.G. Schlom: Oxide interfaces-an opportunity for electronics. Science 327, 1607 (2010).

    Article  CAS  Google Scholar 

  41. M. Imada, A. Fujimori, and Y. Tokura: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998).

    Article  CAS  Google Scholar 

  42. H.M. Zheng, F. Straub, Q. Zhan, P.L. Yang, W.K. Hsieh, F. Zavaliche, Y.H. Chu, U. Dahmen, and R. Ramesh: Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 2747 (2006).

    Article  CAS  Google Scholar 

  43. A. Goyal, S. Kang, K.J. Leonard, P.M. Martin, A.A. Gapud, M. Varela, M. Paranthaman, A.O. Ijaduola, E.D. Specht, J.R. Thompson, D.K. Christen, S.J. Pennycook, and F.A. List: Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7−δ films. Supercond. Sci. Technol. 18, 1533 (2005).

    Article  CAS  Google Scholar 

  44. S. Park, Y. Horibe, T. Asada, L.S. Wielunski, N. Lee, P.L. Bonanno, S.M. O’Malley, A.A. Sirenko, A. Kazimirov, M. Tanimura, T. Gustafsson, and S.W. Cheong: Highly aligned epitaxial nanorods with a checkerboard pattern in oxide films. Nano Lett. 8, 720 (2008).

    Article  CAS  Google Scholar 

  45. A. Mukherjee, W.S. Cole, P. Woodward, M. Randeria, and N. Trivedi: Theory of strain-controlled magnetotransport and stabilization of the ferromagnetic insulating phase in manganite thin films. Phys. Rev. Lett. 110, 157201 (2013).

    Article  CAS  Google Scholar 

  46. W. Zhang, M. Fan, L. Li, A. Chen, Q. Su, Q. Jia, J.L. MacManus-Driscoll, and H. Wang: Heterointerface design and strain tuning in epitaxial BiFeO3:CoFe2O4 nanocomposite films. Appl. Phys. Lett. 107, 212901 (2015).

    Article  CAS  Google Scholar 

  47. F. Zavaliche, T. Zhao, H. Zheng, F. Straub, M.P. Cruz, P-L. Yang, D. Hao, and R. Ramesh: Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 7 (6), 1586 (2007).

    Article  CAS  Google Scholar 

  48. H. Liu, L. Chen, Q. He, C. Liang, Y. Chen, Y. Chien, Y. Hsieh, S. Lin, E. Arenholz, C. Luo, Y. Chueh, Y. Chen, and Y. Chu: Epitaxial photostriction–magnetostriction coupled self-assembled nanostructures. ACS Nano 6 (8), 6952 (2012).

    Article  CAS  Google Scholar 

  49. M. Fan, W. Zhang, F. Khatkhatay, L. Li, and H. Wang: Enhanced tunable magnetoresistance properties over a wide temperature range in epitaxial (La0.7Sr0.3MnO3)1−x:(CeO2)x nanocomposites. J. Appl. Phys. 118, 065302 (2015).

    Article  CAS  Google Scholar 

  50. T. Fix, E. Choi, J.W.A. Robinson, S. Lee, A. Chen, B. Prasad, H. Wang, M.G. Blamire, and J.L. MacManus-Driscoll: Electric-Field control of ferromagnetism in a nanocomposite via a ZnO phase. Nano Lett. 13, 5886 (2013).

    Article  CAS  Google Scholar 

  51. P. Yu, J.S. Lee, S. Okamoto, M.D. Rossell, M. Huijben, C.H. Yang, Q. He, J.X. Zhang, S.Y. Yang, M.J. Lee, Q.M. Ramasse, R. Erni, Y.H. Chu, D.A. Arena, C.C. Kao, L.W. Martin, and R. Ramesh: Interface ferromagnetism and orbital reconstruction in BiFeO3–La0.7Sr0.3MnO3 heterostructures. Phys. Rev. Lett. 105, 027201 (2010).

    Article  CAS  Google Scholar 

  52. A. Ohtomo and H.Y. Hwang: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423 (2004).

    Article  CAS  Google Scholar 

  53. S.M. Yang, S.B. Lee, J. Jian, W. Zhang, Q.X. Jia, H. Wang, T.W. Noh, S.V. Kalinin, and J.L. MacManus-Driscoll: Strongly enhanced oxygen ion transport through samarium-doped CeO2 nanopillars in nanocomposite films. Nat. Commun. 6, 8588 (2015).

    Article  CAS  Google Scholar 

  54. S. Lee, W. Zhang, F. Khatkhatay, H. Wang, Q. Jia, and J.L. MacManus-Driscoll: Ionic conductivity increased by two orders of magnitude in micrometer-thick vertical yttria-stabilized ZrO2 nanocomposite films. Nano Lett. 15, 7362 (2015).

    Article  CAS  Google Scholar 

  55. A. Chen, W. Zhang, J. Jian, H. Wang, C-F. Tsai, Q. Su, Q. Jia, and J.L. MacManus-Driscoll: Role of boundaries on low-field magnetotransport properties of La0.7Sr0.3MnO3-based nanocomposite thin films. J. Mater. Res. 28, 1707 (2013).

    Article  CAS  Google Scholar 

  56. H.N. Lee, H.M. Christen, M.F. Chisholm, C.M. Rouleau, and D.H. Lowndes: Strong polarization enhancement in asymmetric three-component ferroelectric superlattices. Nature 433, 395 (2005).

    Article  CAS  Google Scholar 

  57. J.C. Jiang, E.I. Meletis, and K.I. Gnanasekar: Self-organized, ordered array of coherent orthogonal column nanostructures in epitaxial La0.8Sr0.2MnO3 thin films. Appl. Phys. Lett. 80, 4831 (2002).

    Article  CAS  Google Scholar 

  58. J.C. Jiang, L.L. Henry, K.I. Gnanasekar, C. Chen, and E.I. Meletis: Self-assembly of highly epitaxial (La,Sr)MnO3 nanorods on (001) LaAlO3. Nano Lett. 4, 741 (2004).

    Article  CAS  Google Scholar 

  59. D.X. Huang, C.L. Chen, and A.J. Jacobson: Single-crystal and nano-columnar growth of gadolinium-doped ceria thin films on oxide substrates studied using electron microscopy. Mater. Res. Soc. Symp. Proc. 795, U591 (2004).

    Google Scholar 

  60. D.X. Huang, C.L. Chen, L. Chen, and A.J. Jacobson: Strain relaxation by directionally aligned precipitate nanoparticles in the growth of single-crystalline Gd-doped ceria thin films. Appl. Phys. Lett. 84, 708 (2004).

    Article  CAS  Google Scholar 

  61. N.M. Aimon, H.K. Choi, X. Sun, D.H. Kim, and C.A. Ross: Templated self-assembly of functional oxide nanocomposites. Adv. Mater. 26, 3063 (2014).

    Article  CAS  Google Scholar 

  62. Z. Wang, Y. Li, R. Viswan, B. Hu, V.G. Harris, J. Li, and D. Viehland: Engineered magnetic shape anisotropy in BiFeO3–CoFe2O4 self-assembled thin films. ACS Nano 7 (4), 3447 (2013).

    Article  CAS  Google Scholar 

  63. A. Imai, X. Cheng, H.L. Xin, E.A. Eliseev, A.N. Morozovska, S.V. Kalinin, R. Takahashi, M. Lippmaa, Y. Matsumoto, and V. Nagarajan: Epitaxial Bi5Ti3FeO15–CoFe2O4 pillar-matrix multiferroic nanostructures. ACS Nano 7 (12), 11079 (2013).

    Article  CAS  Google Scholar 

  64. R. Zhao, W. Li, J. Lee, E. Choi, Y. Liang, W. Zhang, R. Tang, H. Wang, Q. Jia, J.L. MacManus-Driscoll, and H. Yang: Precise tuning of (YBa2Cu3O7−δ)1−x:(BaZrO3)x thin film nanocomposite structures. Adv. Funct. Mater. 24, 5240 (2014).

    Article  CAS  Google Scholar 

  65. Y. Zhu, C. Tsai, J. Wang, J. Kwon, H. Wang, C.V. Varanasi, J. Burke, L. Brunke, and P.N. Barnes: Interfacial defects distribution and strain coupling in the vertically aligned nanocomposite YBa2Cu3O7−x/BaSnO3 thin films. J. Mater. Res. 27 (13), 1763 (2012).

    Article  CAS  Google Scholar 

  66. N.M. Aimon, D. Kim, X. Sun, and C.A. Ross: Multiferroic behavior of templated BiFeO3–CoFe2O4 self-assembled nanocomposites. ACS Appl. Mater. Interfaces 7, 2263 (2015).

    Article  CAS  Google Scholar 

  67. R. Comes, H. Liu, M. Khokhlov, R. Kasica, J. Lu, and S.A. Wolf: Directed self-assembly of epitaxial CoFe2O4–BiFeO3 multiferroic nanocomposites. Nano Lett. 12, 2367 (2012).

    Article  CAS  Google Scholar 

  68. A. Chen, J. Hu, P. Lu, T. Yang, W. Zhang, L. Li, T. Ahmed, E. Enriquez, M. Weigand, Q. Su, H. Wang, J. Zhu, J.L. MacManus-Driscoll, L. Chen, D. Yarotski, and Q. Jia: Role of scaffold network in controlling strain and functionalities of nanocomposite films. Sci. Adv. 2, e1600245 (2016).

    Article  CAS  Google Scholar 

  69. F. Khatkhatay, A. Chen, J. Lee, W. Zhang, H. Abdel-Raziq, and H. Wang: Ferroelectric properties of vertically aligned nanostructured BaTiO3–CeO2 thin films and their integration on silicon. ACS Appl. Mater. Interfaces 5, 12541 (2013).

    Article  CAS  Google Scholar 

  70. J. Huang, L. Li, X. Wang, Z. Qi, M.A.P. Sebastian, T.J. Haugan, and H. Wang: Enhanced flux pinning properties of YBCO thin films with various pinning landscapes. IEEE Trans. Appl. Supercond. 27 (4), 8000305 (2017).

    Google Scholar 

  71. S.A. Harrington, J. Zhai, S. Denev, V. Gopalan, H. Wang, Z. Bi, S.A.T. Redfern, S. Baek, C.W. Bark, C. Eom, Q. Jia, M.E. Vickers, and J.L. MacManus-Driscoll: Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat. Nanotechnol. 6, 491 (2011).

    Article  CAS  Google Scholar 

  72. J. Huang, M. Fan, H. Wang, L. Chen, C. Tsai, L. Li, and H. Wang: Enhanced superconducting properties of YBa2Cu3O7−δ thin film with magnetic nanolayer additions. Ceram. Int. 42, 12202 (2016).

    Article  CAS  Google Scholar 

  73. F.J. Bonilla, A. Novikova, F. Vidal, Y. Zheng, E. Fonda, D. Demaille, V. Schuler, A. Coati, A. Vlad, Y. Garreau, M.S. Simkin, Y. Dumont, S. Hidki, and V. Etgens: Combinatorial growth and anisotropy control of self-assembled epitaxial ultrathin alloy nanowires. ACS Nano 7 (5), 4022 (2013).

    Article  CAS  Google Scholar 

  74. J. Huang, C. Tsai, L. Chen, J. Jian, F. Khatkhatay, K. Yu, and H. Wang: Magnetic properties of (CoFe2O4)x:(CeO2)1−x vertically aligned nanocomposites and their pinning properties in YBa2Cu3O7−δ thin films. J. Appl. Phys. 115, 123902 (2014).

    Article  CAS  Google Scholar 

  75. O. Lee, S.A. Harrington, A. Kursumovic, E. Defay, H. Wang, Z. Bi, C. Tsai, L. Yan, Q. Jia, and J.L. MacManus-Driscoll: Extremely high tunability and low loss in nanoscaffold ferroelectric films. Nano Lett. 12, 4311 (2012).

    Article  CAS  Google Scholar 

  76. S. Lee, A. Sangle, P. Lu, A. Chen, W. Zhang, J. Lee, H. Wang, Q. Jia, and J.L. MacManus-Driscoll: Novel electroforming-free nanoscaffold memristor with very high uniformity, tunability, and density. Adv. Mater. 26, 6284 (2014).

    Article  CAS  Google Scholar 

  77. A. Chen, Z. Bi, H. Hazariwala, X. Zhang, Q. Su, L. Chen, Q. Jia, J.L. MacManus-Driscoll, and H. Wang: Microstructure, magnetic, and low-field magnetotransport properties of self-assembled (La0.7Sr0.3MnO3)0.5:(CeO2)0.5 vertically aligned nanocomposite thin films. Nanotechnology 22, 315712 (2011).

    Article  CAS  Google Scholar 

  78. W. Chang, H. Liu, V.T. Tra, J. Chen, T. Wei, W.Y. Tzeng, Y. Zhu, H. Kuo, Y. Hsieh, J. Lin, Q. Zhan, C. Luo, J. Lin, J. He, C. Wu, and Y. Chu: Tuning electronic transport in a self-assembled nanocomposite. ACS Nano 8 (6), 6242 (2014).

    Article  CAS  Google Scholar 

  79. A. Chen, W. Zhang, F. Khatkhatay, Q. Su, C. Tsai, L. Chen, Q.X. Jia, J.L. MacManus-Driscoll, and H. Wang: Magnetotransport properties of quasi-one-dimensionally channeled vertically aligned heteroepitaxial nanomazes. Appl. Phys. Lett. 102, 093114 (2013).

    Article  CAS  Google Scholar 

  80. J. Narayan and B.C. Larson: Domain epitaxy: A unified paradigm for thin film growth. J. Appl. Phys. 93, 278 (2003).

    Article  CAS  Google Scholar 

  81. T.A. Rawdanowicz and J. Narayan: Epitaxial GaN on Si(111): Process control of SiNx interlayer formation. Appl. Phys. Lett. 85, 133 (2004).

    Article  CAS  Google Scholar 

  82. H. Wang, A. Tiwari, A. Kvit, X. Zhang, and J. Narayan: Epitaxial growth of TaN thin films on Si(100) and Si(111) using a TiN buffer layer. Appl. Phys. Lett. 80, 2323 (2002).

    Article  CAS  Google Scholar 

  83. Z. Bi, J.H. Lee, H. Yang, Q. Jia, J.L. MacManus-Driscoll, and H. Wang: Tunable lattice strain in vertically aligned nanocomposite (BiFeO3)x:(Sm2O3)1−x thin films. J. Appl. Phys. 106, 094309 (2009).

    Article  CAS  Google Scholar 

  84. S. Cho, C. Yun, S. Tappernzhofen, A. Kursumovic, S. Lee, P. Lu, Q. Jia, M. Fan, J. Jian, H. Wang, S. Hofmann, and J.L. MacManus-Driscoll: Self-assembled oxide films with tailored nanoscale ionic and electronic channels for controlled resistive switching. Nat. Commun. 7, 12373 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The work is funded by the U.S. National Science Foundation (DMR-1643911 for VAN thin film growth and DMR-1565822 for high resolution TEM/STEM work). JLM-D acknowledges support from EPSRC grants, EP/K035282/1 and EP/N004272/1 and the Leverhulme grant RPG-2015-017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., MacManus-Driscoll, J.L. & Wang, H. New epitaxy paradigm in epitaxial self-assembled oxide vertically aligned nanocomposite thin films. Journal of Materials Research 32, 4054–4066 (2017). https://doi.org/10.1557/jmr.2017.281

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.281

Navigation