Skip to main content
Log in

Preparation of chitosan/safflower and ligusticum wallichii polysaccharides hydrogel for potential application in drug delivery and tissue engineering

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Biological hydrogel is important in drug delivery system and tissue engineering. In this paper, we prepared a series of biological hydrogels with N, O-carboxymethyl chitosan (CS) and oxidized safflower and ligusticum wallichii polysaccharide-II (oxidized SLWP-II). Morphological analysis indicated the N, O-carboxymethyl CS/oxidized SLWP-II hydrogels (CSLHs) had porous interior structures, pore diameter ranged from tens to hundreds of micrometers. In vitro release test showed, with proportion of N, O-carboxymethyl CS to oxidized SLWP increasing from 1:1 to 1:3, cumulative release of bovine serum albumin decreased from 99 to 82%. In vitro cytotoxicity study showed that the developed hydrogels were not cytotoxic during one week of culturing with WI-38 cells, and they have a role in promoting cell proliferation. So the N, O-carboxymethyl CS/oxidized safflower and ligusticum wallichii polysaccharide-II hydrogels might have potential application in the drug delivery system and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. E. Khor: Chitin: A biomaterial in waiting. Curr. Opin. Solid State Mater. Sci. 4, 313–317 (2002).

    Article  Google Scholar 

  2. N.A. Peppas, Y. Huang, and M. Torreslugo: Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu. Rev. Biomed. Eng. 2, 9–29 (2000).

    Article  CAS  Google Scholar 

  3. M.S. Shoichet: Polymer scaffolds for biomaterials applications. Macromolecules 43, 581–589 (2010).

    Article  CAS  Google Scholar 

  4. M. Rinaudo: Main properties and current applications of some polysaccharides as biomaterials. Polym. Int. 57, 397–430 (2008).

    Article  CAS  Google Scholar 

  5. L.C. Alvarez, F.B. Blanco, A.M. Puga, and A. Concheiro: Crosslinked ionic polysaccharides for stimulisensitive drug delivery. Adv. Drug Delivery Rev. 65, 1148–1171 (2013).

    Article  Google Scholar 

  6. L. Chen, C. Tang, N. Ning, C. Wang, and Q. Zhang: Preparation and properties of chitosan/lignin composite films. J. Polym. Sci. 27, 739–746 (2009).

    CAS  Google Scholar 

  7. H. Honarkar and M. Barikani: Applications of biopolymers I: Chitosan. Monatsh. Chem. 140, 1403–1420 (2009).

    Article  CAS  Google Scholar 

  8. C.M. Yeng, H. Salmah, and S.T. Sam: Modified corn cob filled chitosan biocomposite films. Polym.-Plast. Technol. Eng. 52, 1496–1502 (2013).

    Article  CAS  Google Scholar 

  9. M.A. Aziz, J.D. Cabral, and S.C. Moratti: Antimicrobial properties of a chitosan dextranbased hydrogel for surgical use. Antimicrob. Agents Chemother. 1, 280–287 (2012).

    Article  Google Scholar 

  10. L. Yin, X. Zhao, and J. Ding: Cytotoxicity and genotoxicity of superporous hydrogel containing interpenetrating polymer networks. Food Chem. Toxicol. 6, 1139–1145 (2009).

    Article  Google Scholar 

  11. S.H. Lim and S.M. Hudson: Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr. Res. 339, 313–319 (2004).

    Article  CAS  Google Scholar 

  12. G. Ma, D. Yang, Y. Zhou, M. Xiao, J.F. Kennedy, and J. Nie: Preparation and characterization of soluble-alkylated chitosan. Carbohydr. Polym. 74, 121–126 (2008).

    Article  CAS  Google Scholar 

  13. J.S. Fu and Q.R. Sun: Preparation of the high degree of substitution of carboxymethyl chitosan and handictaft research. Pet. Chem. Ind. Prog. 12, 56–58 (2010).

    Google Scholar 

  14. J.D. Wang, W. Liu, R.L. Yang, and X.B. Sun: Effects of ligusticum chuanxiong polysaccharides on proliferation and apoptosis of human hepatoma cell line HepG2. J. Nanjing Univ. Tradit. Chin. Med. 30, 461–464 (2014).

    CAS  Google Scholar 

  15. X.K. Shi, D.Q. Ruan, Y.X. Wang, L. Ma, and M.Q. Li: Antitumor activity of safflower polysaccharide and its effects on CTL and NK cell killing activity in T739 lung cancer mice. Chinese J. Tradi. Chinese Medi. 35, 215–218 (2010).

    Google Scholar 

  16. Z.C. Fan and Z.Q. Zhang: Study on extraction, purification and antioxidant activity of polysaccharides from ligusticum chuanxiong hort. Nat. Prod. Res. Dev. 17, 561–563 (2005).

    CAS  Google Scholar 

  17. C.G. Zhao, Y.H. Huang, and Y.L. Liu: Effect of polysaccharide from safflower petal on scavenging free radical. Hubei Agric. Sci. 53, 900–9002 (2014).

    Google Scholar 

  18. K.T. Huang: Handbook of Traditional Chinese Medicine and Pharmacology, Vol. 89 (China Medical Science and Technology Press, Beijing, China 1993); pp. 910–913.

    Google Scholar 

  19. Y.J. Zhang, X. Zhang, and X.L. Zhang: Separation, purification and initial research of water-soluble polysaccharide CTP from Carthamus tinctorius. Chin. Pharm. J. 40, 620–622 (2005).

    Google Scholar 

  20. X.C. Sun, J. Yan, and G. He: Purification and analysis of monosaccharide composition of ligusticum chuanxiong polysaccharide. J. Sichuan Agric. Univ. 29, 56–60 (2011).

    Google Scholar 

  21. H.J. Liao and H.W. Zhang: Differential physical, rheological, and biological properties of rapid in situ gelable hydrogels composed of oxidized alginate and gelatin derived from marine or porcine sources. J. Mater. Sci.: Mater. Med. 20, 1263–1271 (2009).

    CAS  Google Scholar 

  22. Y.W. Lin, C. Xu, and C.H. Liu: Preparation of carboxymethyl chitosan by ultrasonic radiation. Ion Exch. Adsorpt. 16, 54–59 (2000).

    CAS  Google Scholar 

  23. J.D. Cabral, M. Roxburgh, Z. Shi, and M. McConnell: Synthesis, physiochemical characterization, and biocompatibility of a chitosan/dextran-based hydrogel for postsurgical adhesion prevention. J. Mater. Sci.: Mater. Med. 25, 2743–2756 (2014).

    CAS  Google Scholar 

  24. Q.M. Wang, Y.M. Liao, and W. Chen: Hydrochloride-potentiometric titration aldehyde group concentration on sodium alginate. Chin. J. Anal. Lab. 04, 12–15 (2008).

    Google Scholar 

  25. X.Y. Li, Y.H. Weng, and X.Y. Kong: A covalently crosslinked polysaccharide hydrogel for potential applications in drug delivery and tissue engineering. J. Mater. Sci.: Mater. Med. 23, 2857–2865 (2012).

    CAS  Google Scholar 

  26. Z.K. Yang and X.L. Wang: Coomassie brilliant blue staining was used to determine the protein content of soybean leaves and stem. Hubei Agric. Sci. 20, 4610–4612 (2012).

    Google Scholar 

  27. S. Tamburic and D.Q.M. Craig: Rheological evaluation of polyacrylic acid hydrogels. Pharm. Sci. 01, 107–109 (1995).

    CAS  Google Scholar 

  28. F.X. Han, X.L. Yang, and J. Zhao: Photocrosslinked layered gelatin–chitosan hydrogel with graded compositions for osteochondral defect repair. J. Mater. Sci.: Mater. Med. 160, 1–13 (2015).

    CAS  Google Scholar 

  29. A. Jaidee, P. Rachtanapun, and S. Luangkamin: 1H-NMR analysis of degree of substitution in N, O-carboxymethyl chitosans from various chitosan sources and types. Adv. Mater. Res. 506, 158–161 (2012).

    Article  CAS  Google Scholar 

  30. R. Jayakumar: Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications. Prog. Mater. Sci. 55, 675–709 (2010).

    Article  CAS  Google Scholar 

  31. R.A.A. Muzzarelli, P. Jari, and M. Petrarulo: Solubility and structure of N-carboxymethylchitosan. Int. J. Biol. Macromol. 16, 177–180 (1994).

    Article  CAS  Google Scholar 

  32. C.J. Ostrowska and D.M. Gierszewska: Effect of ionic crosslinking on the water state in hydrogel chitosan membranes. Carbohydr. Polym. 77, 590–598 (2009).

    Article  Google Scholar 

  33. L. Fan, Y. Du, B. Zhang, J. Yang, J. Zhou, and J.F. Kennedy: Preparation and properties of alginate/carboxymethyl chitosan blend fibers. Carbohydr. Polym. 65, 447–452 (2006).

    Article  CAS  Google Scholar 

  34. F. Chambon, Z.S. Petrovic, W.J. Macknight, and H.H. Winter: Rheology of model polyurethanes at the gel point. Macromolecules 8, 2146–2149 (1986).

    Article  Google Scholar 

  35. M. Kreilgaaed: Influence of microemulsions on cutaneous drug delivery. Adv. Drug Delivery Rev. 54, 77–98 (2002).

    Article  Google Scholar 

  36. H. Shin, B.D. Olsen, and A. Khademhosseini: The mechanical properties and cytotoxicity of cell-laden double-network hydrogels based on photocrosslinkable gelatin and gellan gum biomacromolecules. Biomaterials 33, 143–152 (2012).

    Google Scholar 

  37. Q. Li, D. Yang, G. Ma, Q. Xu, and X. Chen: Synthesis and characterization of chitosan-based hydrogels. Int. J. Biol. Macromol. 44, 121–127 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China (No. 81260070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijie Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pu, X., Li, X., Zhang, W. et al. Preparation of chitosan/safflower and ligusticum wallichii polysaccharides hydrogel for potential application in drug delivery and tissue engineering. Journal of Materials Research 32, 2719–2727 (2017). https://doi.org/10.1557/jmr.2017.255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.255

Navigation