Skip to main content

Advertisement

Log in

Three-dimensional porous layered double hydroxides growing on carbon cloth as binder-free electrodes for supercapacitors

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, a three-dimensional (3D) porous hybrid nickel/aluminum layered double hydroxide (Ni/Al-LDH)-carbon cloth (CC), the working electrode without binders or conductive additions for supercapacitor, was successfully synthesized via facile one-step hydrothermal method. The as-obtained Ni/Al-LDH/CC sample exhibited good charge storage performance (the specific capacitance was up to 359 F/g at a current density of 0.3 A/g), as well as superior cycling stability (5.9% capacitance increase after 3000 cycles at 1.0 A/g). Furthermore, an asymmetric supercapacitor, Ni/Al-LDH/CC as positive electrode and activated carbon (AC) as negative electrode (Ni/Al-LDH/CC//AC), achieved a high energy density (20.9 Wh/kg vs. the power density 262.5 W/kg) and good cycle lifetime (83.9% retention of the initial value after 3000 cycle tests at a current density of 0.5 A/g). The unique 3D porous structure and binder-free electrode display great potential in supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. X. Li, Y. Zhang, W. Xing, L. Li, Q. Xue, and Z. Yan: Sandwich-like graphene/polypyrrole/layered double hydroxide nanowires for high-performance supercapacitors. J. Power Sources 331, 67–75 (2016).

    Article  CAS  Google Scholar 

  2. E. Frackowiak: Carbon materials for supercapacitor application. Phys. Chem. Chem. Phys. 9, 1774–1785 (2007).

    Article  CAS  Google Scholar 

  3. W. Chen and S. Mu: The electrocatalytic oxidative polymerizations of aniline and aniline derivatives by graphene. Electrochim. Acta 56, 2284–2289 (2011).

    Article  CAS  Google Scholar 

  4. H. Zhang, C. Ma, J. Tong, Y-F. Hu, J. Zhao, B. Hu, and C-Y. Wang: Effect of potassium sulfate in mineral precursor on capacitance behavior of as-prepared activated carbon. Fuel Process. Technol. 142, 235–241 (2016).

    Article  CAS  Google Scholar 

  5. M.A. Henderson, R. Mu, A. Dahal, I. Lyubinetsky, Z. Dohnálek, V-A. Glezakou, and R. Rousseau: Light makes a surface banana-bond split: Photodesorption of molecular hydrogen from RuO2(110). J. Am. Chem. Soc. 138, 8714–8717 (2016).

    Article  CAS  Google Scholar 

  6. D. Cai, B. Liu, D. Wang, L. Wang, Y. Liu, H. Li, Y. Wang, Q. Li, and T. Wang: Construction of unique NiCo2O4 nanowire@CoMoO4 nanoplate core/shell arrays on Ni foam for high areal capacitance supercapacitors. J. Mater. Chem. A 2, 4954–4960 (2014).

    Article  CAS  Google Scholar 

  7. G. Yu, L. Hu, and M. Vosgueritchian: Solution-processed graphene/MnO2 nanostructured textiled for high-performance electrochemical capacitors. Nano Lett. 11, 2905–2911 (2011).

    Article  CAS  Google Scholar 

  8. J. Cui, X. Zhang, L. Tong, J. Luo, Y. Wang, Y. Zhang, K. Xie, and Y. Wu: A facile synthesis of mesoporous Co3O4/CeO2 hybrid nanowire arrays for high performance supercapacitors. J. Mater. Chem. A 3, 10425–10431 (2015).

    Article  CAS  Google Scholar 

  9. Z. Li, J. Han, L. Fan, M. Wang, S. Tao, and R. Guo: The anion exchange strategy towards mesoporous α-Ni(OH)2 nanowires with multinanocavities for high-performance supercapacitors. Chem. Commun. 51, 3053–3056 (2015).

    Article  CAS  Google Scholar 

  10. Z. Li, J. Han, L. Fan, and R. Guo: In situ controllable growth of α-Ni(OH)2 with different morphologies on reduced graphene oxide sheets and capacitive performance for supercapacitors. Colloid Polym. Sci. 294, 681–689 (2016).

    Article  CAS  Google Scholar 

  11. R. Ma, J. Liang, K. Takada, and T. Sasaki: Topochemical synthesis of Co–Fe layered double hydroxides at varied Fe/Co ratios: Unique intercalation of triiodide and its profound effect. J. Am. Chem. Soc. 133, 613–620 (2011).

    Article  CAS  Google Scholar 

  12. D.P. Dubal, B. Ballesteros, A.A. Mohite, and P. Gómez-Romero: Functionalization of polypyrrole nanopipes with redox-active polyoxometalates for high energy density supercapacitors. ChemSusChem 10 (4), 731–737 (2017).

    Article  CAS  Google Scholar 

  13. A.K. Thakur, M. Majumder, R.B. Choudhary, and S.N. Pimpalkar: Supercapacitor based on electropolymerized polythiophene and multiwalled carbon nanotubes composites. Mater. Chem. Phys. 132, 596–604 (2016).

    Google Scholar 

  14. X. Guo, F. Zhang, D.G. Evans, and X. Duan: Layered double hydroxide films: Synthesis, properties and applications. Chem. Commun. 46, 5197–5210 (2010).

    Article  CAS  Google Scholar 

  15. Z. Lu, W. Xu, W. Zhu, Q. Yang, X. Lei, J. Liu, Y. Li, and X. Sun: Three-dimensional NiFe layered double hydroxide film for high-efficiency oxygen evolution reaction. Chem. Commun. 50, 6479–6482 (2014).

    Article  CAS  Google Scholar 

  16. F. Song and X. Hu: Ultrathin cobalt-manganese layered double hydroxide is an efficient oxygen evolution catalyst. J. Am. Chem. Soc. 136, 16481–16484 (2014).

    Article  CAS  Google Scholar 

  17. E. Shahar, U. Attias, D. Savulescu, J. Genizin, M. Gavish, and R. Nagler: Oxidative stress, metalloproteinase and LDH in children with in tractable and nonintractable epilepsy as reflected in salivary analysis. Epilepsy Res. 108, 117–124 (2014).

    Article  CAS  Google Scholar 

  18. H. Chen, L. Hu, M. Chen, Y. Yan, and L. Wu: Nickel–cobalt layered double hydroxide nanosheets for high-performance supercapacitor electrode materials. Adv. Funct. Mater. 24, 934–942 (2014).

    Article  Google Scholar 

  19. J. Huang, T. Lei, X. Wei, X. Liu, T. Liu, D. Cao, J. Yin, and G. Wang: Effect of Al-doped β-Ni(OH)2 nanosheets on electrochemical behaviors for high performance supercapacitor application. J. Power Sources 232, 370–375 (2013).

    Article  CAS  Google Scholar 

  20. C.Y. Wang, S. Zhong, K. Konstantinov, G. Walter, and H.K. Liu: Structural study of Al-substituted nickel hydroxide. Solid State Ionics 148, 503–508 (2002).

    Article  CAS  Google Scholar 

  21. X. Ge, C. Gu, Z. Yin, X. Wang, J. Tu, and J. Li: Periodic stacking of 2D charged sheets: Self-assembled superlattice of Ni–Al layered double hydroxide (LDH) and reduced graphene oxide. Nano Energy 20, 185–193 (2016).

    Article  CAS  Google Scholar 

  22. D.S. Hall, D.J. Lockwood, C. Bock, and B.R. Macdougall: Nickel hydroxides and related materials: A review of their structures, synthesis and properties. Proc. R. Soc. A 417, 2174–2239 (2015).

    Google Scholar 

  23. Y-Y. Horng, Y-C. Lu, Y-K. Hsu, C-C. Chen, L-C. Chen, and K-H. Chen: Flexible supercapacitor based on polyaniline nanowires/carbon cloth with both high gravimetric and area-normalized capacitance. J. Power Sources 195, 4418–4422 (2010).

    Article  CAS  Google Scholar 

  24. B. Hai and Y. Zou: Carbon cloth supported NiAl-layered double hydroxides for flexible application and highly sensitive electrochemical sensors. Sens. Actuators, B 208, 143–150 (2015).

    Article  CAS  Google Scholar 

  25. J. Zhou, Z. Li, W. Xing, H. Shen, X. Bi, T. Zhu, Z. Qiu, and S. Zhuo: A new approach to tuning carbon ultramicropore size at sub-Angstrom level for maximizing specific capacitance and CO2 uptake. Adv. Funct. Mater 26, 7955–7964 (2016).

    Article  CAS  Google Scholar 

  26. H. Wang, X. Xiang, and F. Li: Facile synthesis and novel electrocatalytic performance of nanostructured Ni–Al layered double hydroxide/carbon nanotube composites. J. Mater. Chem. 20, 3944–3956 (2010).

    Article  CAS  Google Scholar 

  27. L. Zhang, J. Wang, J. Zhu, X. Zhang, K. San Hui, and K. Nam Hui: 3D porous layered double hydroxides grown on graphene as advanced electrochemical pseudocapacitor materials. J. Mater. Chem. A 1, 9046–9053 (2013).

    Article  CAS  Google Scholar 

  28. A.A. Ensafi, M. Jafari-Asl, A. Nabiyan, and B. Rezaei: Preparation of three-dimensional ruthenium oxide@graphene oxide based on etching of Ni–Al/layered double hydroxides: application for electrochemical hydrogen generation. J. Electrochem. Soc. 163, H610–H617 (2016).

    Article  CAS  Google Scholar 

  29. X. Wang, S. Zhou, W. Xing, B. Yu, X. Feng, L. Song, and Y. Hu: Self-assembly of Ni–Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J. Mater. Chem. A 1, 4383–4390 (2013).

    Article  CAS  Google Scholar 

  30. J. Wang, Y. Song, Z. Li, Q. Liu, J. Zhou, X. Jing, M. Zhang, and Z. Jiang: In situ Ni/Al layered double hydroxide and its electrochemical capacitance performance. Energy Fuel 24, 6463–6467 (2010).

    Article  CAS  Google Scholar 

  31. M. Li, J.P. Cheng, J.H. Fang, Y. Yang, F. Liu, and X.B. Zhang: NiAl-layered double hydroxide/reduced graphene oxide composite: Microwave-assisted synthesis and supercapacitive properties. Electrochim. Acta 13, 309–318 (2014).

    Article  Google Scholar 

  32. D.Y. Momodu, F. Barzegar, A. Bello, J. Dangbegnon, T. Masikhwa, J. Madito, and N. Manyala: Simonkolleite-graphene foam composites and their superior electrochemical performance. Electrochim. Acta 151, 591–598 (2015).

    Article  CAS  Google Scholar 

  33. H. Li, Z. Chen, Y. Wang, J. Zhang, and X. Yan: Controlled synthesis and enhanced electrochemical performance of self-assembled rosette-type Ni–Al layered double hydroxide. Electrochim. Acta 210, 15–22 (2016).

    Article  CAS  Google Scholar 

  34. X. Fan, X. Wang, G. Li, A. Yu, and Z. Chen: High-performance flexible electrode based on electrodeposition of polypyrrole/MnO2 on carbon cloth for supercapacitors. J. Power Sources 326, 357–364 (2016).

    Article  CAS  Google Scholar 

  35. L. Zhang, K.N. Hui, K.S. Hui, X. Chen, R. Chen, and H. Lee: Role of graphene on hierarchical flower-like NiAl layered double hydroxide-nickel foam-graphene as binder-free electrode for high-rate hybrid supercapacitor. Int. J. Hydrogen Energy 41, 9443–9453 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), the Natural Science Foundation of China (NO.21375116) and Postdoctoral Science Foundation of China (2014M551668). The related measure and analysis instrument for this work was supported by the Testing Center of Yangzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaihao Zhang.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Li, Y., Zhao, J. et al. Three-dimensional porous layered double hydroxides growing on carbon cloth as binder-free electrodes for supercapacitors. Journal of Materials Research 32, 2487–2496 (2017). https://doi.org/10.1557/jmr.2017.227

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.227

Navigation