Skip to main content
Log in

Recombination dynamics in planar and three-dimensional InGaN/GaN light emitting diode structures

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The spectrally and temporally resolved luminescence of three-dimensional (3D) InGaN/GaN microrods and planar light emitting diode (LED) structures is studied for different energy densities of fs-laser excitation pulses and for different sample temperatures. We find an energy density threshold above which irreversible modifications of the structures take place, which leads to a decrease of the luminescence intensity and a change in the intensity ratio of the GaN to the InGaN luminescence. Due to the quantum confined Stark effect, a biexponential decay characteristic is found in the planar structure, while the 3D microrods with nonpolar InGaN quantum wells on their sidewalls show a monoexponential decay of the InGaN luminescence. For both structures, the decay of the luminescence becomes faster with increasing energy density per pulse. However, the luminescence of the planar LED decays faster with increasing temperature, while the opposite trend is found for the 3D sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, and M.G. Craford: Status and future of high-power light-emitting diodes for solid-state lighting. J. Disp. Technol. 3, 160–175 (2007).

    Article  CAS  Google Scholar 

  2. A. Waag, X. Wang, S. Fündling, J. Ledig, M. Erenburg, R. Neumann, M. Al Suleiman, S. Merzsch, J.D. Wei, S. Li, H-H. Wehmann, W. Bergbauer, M. Straßburg, A. Trampert, U. Jahn, and H. Riechert: The nanorod approach: GaN NanoLEDs for solid state lighting. Phys. Status Solidi C 8, 2296–2301 (2011).

    Article  CAS  Google Scholar 

  3. M. Mandl, X. Wang, T. Schimpke, C. Kölper, M. Binder, J. Ledig, A. Waag, X. Kong, A. Trampert, F. Bertram, J. Christen, F. Barbagini, E. Calleja, and M. Strassburg: Group III nitride core–shell nano- and microrods for optoelectronic applications. Phys. Status Solidi RRL 7, 800–814 (2013).

    Article  CAS  Google Scholar 

  4. Y.J. Hong, C.H. Lee, A. Yoon, M. Kim, H.K. Seong, H.J. Chung, C. Sone, Y.J. Park, and G.C. Yi: Visible-color-tunable light-emitting diodes. Adv. Mater. 23, 3284–3288 (2011).

    Article  CAS  Google Scholar 

  5. B.O. Jung, S. Bae, S. Lee, S.Y. Kim, J.Y. Lee, Y. Honda, and H. Amano: Emission characteristics of InGaN/GaN core–shell nanorods embedded in a 3D light-emitting diode. Nanoscale Res. Lett. 11, 215 (2016).

    Article  Google Scholar 

  6. T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki: Quantum-confined Stark effect due to piezoelectric fields in GaInN strained quantum wells. Jpn. J. Appl. Phys. 36, L382–L385 (1997).

    Article  CAS  Google Scholar 

  7. P. Waltereit, O. Brandt, A. Trampert, H.T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K.H. Ploog: Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865–868 (2000).

    Article  CAS  Google Scholar 

  8. T. Langer, M. Klisch, F. Alexej Ketzer, H. Jönen, H. Bremers, U. Rossow, T. Meisch, F. Scholz, and A. Hangleiter: Radiative and nonradiative recombination mechanisms in nonpolar and semipolar GaInN/GaN quantum wells. Phys. Status Solidi B 253, 133–139 (2016).

    Article  CAS  Google Scholar 

  9. J. Seo Im, H. Kollmer, J. Off, A. Sohmer, F. Scholz, and A. Hangleiter: Reduction of oscillator strength due to piezoelectric fields in GaN/AlxGa1−xN quantum wells. Phys. Rev. B: Condens. Matter Mater. Phys. 57, R9435 (1998).

    Article  CAS  Google Scholar 

  10. C. Kölper, M. Sabathil, F. Römer, M. Mandl, M. Strassburg, and B. Witzigmann: Core–shell InGaN nanorod light emitting diodes: Electronic and optical device properties. Phys. Status Solidi A 209, 2304–2312 (2012).

    Article  Google Scholar 

  11. T. Kim, H.S. Kim, M. Hetterich, D. Jones, J.M. Girkin, E. Bente, and M.D. Dawson: Femtosecond laser machining of gallium nitride. Mater. Sci. Eng., B 82, 262–264 (2001).

    Article  Google Scholar 

  12. C.F. Chu, C.K. Lee, C.C. Yu, Y.K. Wang, J.Y. Tasi, C.R. Yang, and S.C. Wang: High etching rate of GaN films by KrF excimer laser. Mater. Sci. Eng., B 82, 42–44 (2001).

    Article  Google Scholar 

  13. A. Schneider: Structuring of zinc oxide and gallium nitride with femtosecond laser pulses: ablation, surface structures and optical properties. PhD Dissertation, University Bremen, Department of Physics and Electrical Engineering, 2015.

  14. J. Feldmann, G. Peter, E.O. Göbel, P. Dawson, K. Moore, C. Foxon, and R.J. Elliott: Linewidth dependence of radiative exciton lifetimes in quantum wells. Phys. Rev. Lett. 59, 2337–2340 (1987).

    Article  CAS  Google Scholar 

  15. L.C. Andreani, F. Tassone, and F. Bassani: Radiative lifetime of free excitons in quantum wells. Solid State Commun. 77, 641–645 (1991).

    Article  CAS  Google Scholar 

  16. P. Lefebvre, J. Allègre, B. Gil, A. Kavokine, H. Mathieu, W. Kim, A. Salvador, A. Botchkarev, and H. Morkoç: Recombination dynamics of free and localized excitons in GaN/Ga0.93Al0.07N quantum wells. Phys. Rev. B: Condens. Matter Mater. Phys. 57, R9447–R9450 (1998).

    Article  CAS  Google Scholar 

  17. D. Rosales, T. Bretagnon, B. Gil, A. Kahouli, J. Brault, B. Damilano, J. Massies, M.V. Durnev, and A.V. Kavokin: Excitons in nitride heterostructures: From zero- to one-dimensional behavior. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 1–7 (2013).

    Article  Google Scholar 

  18. S. Marcinkevičius, K.M. Kelchner, L.Y. Kuritzky, S. Nakamura, S.P. Denbaars, and J.S. Speck: Photoexcited carrier recombination in wide m-plane InGaN/GaN quantum wells. Appl. Phys. Lett. 103, 1–6 (2013).

    Google Scholar 

  19. X. Wang, S. Li, M.S. Mohajerani, J. Ledig, H-H. Wehmann, M. Mandl, M. Strassburg, U. Steegmüller, U. Jahn, J. Lähnemann, H. Riechert, I. Griffiths, D. Cherns, and A. Waag: Continuous-flow MOVPE of Ga-polar GaN column arrays and core–shell LED Structures. Cryst. Growth Des. 13, 3475–3480 (2013).

    Article  CAS  Google Scholar 

  20. E.S. Jeon, V. Kozlov, Y.K. Song, A. Vertikov, M. Kuball, A.V. Nurmikko, H. Liu, C. Chen, R.S. Kern, C.P. Kuo, and M.G. Craford: Recombination dynamics in InGaN quantum wells. Appl. Phys. Lett. 4194, 8–11 (2016).

    Google Scholar 

  21. J. Bai, T. Wang, and S. Sakai: Influence of the quantum-well thickness on the radiative recombination of InGaN/GaN quantum well structures. J. Appl. Phys. 88, 4729 (2000).

    Article  CAS  Google Scholar 

  22. H. Morkoç: Nitride Semiconductors and Devices (Springer, Berlin, Heidelberg, 1999).

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work has been supported by the DFG within the research unit FOR1616. The samples were grown by the team of the Epitaxy Competence Center ec2, Braunschweig. We acknowledge the technical assistance of A. Heidemann and K-H. Lachmund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelina Vogt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogt, A., Hartmann, J., Zhou, H. et al. Recombination dynamics in planar and three-dimensional InGaN/GaN light emitting diode structures. Journal of Materials Research 32, 2456–2463 (2017). https://doi.org/10.1557/jmr.2017.212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.212

Navigation