Skip to main content
Log in

Investigation of Charpy impact behavior of porous twisted wire material

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A novel stainless steel porous twisted wire material (PTWM) is made of twisted short wires by compaction followed by vacuum high-temperature solid-phase sintering. The twisted short wires are fabricated by using a self-developed rotary multicutter tool to cut stainless steel wire ropes. The PTWMs with 46–70% porosities have been investigated in terms of porous structures and Charpy impact behavior. The PTWMs with spatial composite intertexture structures exhibit interconnected open-pore microstructures with a variety of shapes and sizes. The pore size distributions became convergent with decreasing porosities. The span of pore distribution of the PTWM with a diameter of 90 μm was half than that of the PTWM with a diameter of 160 μm under 65–66% porosity. The impact toughness of the former is 2.6 times than that of the latter. By increasing the porosity from 46 to 70%, the impact toughness decreases from 17.9 to 9.1 J/cm2. Macroscopically integral failure-morphologies of the PTWMs present mixed ductile–brittle failure mechanisms, but microscopic impact deformation and failure mechanisms mainly show the ductile failure and fracture of pore skeletons. The PTWMs demonstrate complex energy absorption mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. L.P. Lefebvre, J. Banhart, and D.C. Dunand: Porous metals and metallic foams: Current status and recent developments. Adv. Eng. Mater. 10 (9), 775–787 (2008).

    Article  CAS  Google Scholar 

  2. K.J. Kang: Wire-woven cellular metals: The present and future. Prog. Mater. Sci. 69, 213–307 (2015).

    Article  Google Scholar 

  3. M.G. Lee, K.W. Lee, H.K. Hur, and K.J. Kang: Mechanical behavior of a wire-woven metal under compression. Compos. Struct. 95, 264–277 (2013).

    Article  Google Scholar 

  4. M.G. Lee, J.W. Yoon, S.M. Han, Y.S. Suh, and K.J. Kang: In-plane compression response of wire-woven metal cored sandwich panels. Mater. Des. 55, 718–726 (2014).

    Article  Google Scholar 

  5. B.K. Lee and K.J. Kang: A parametric study on compressive characteristics of wire-woven bulk Kagome truss cores. Compos. Struct. 92, 445–453 (2010).

    Article  Google Scholar 

  6. K.J. Kang: A wire-woven cellular metal of ultrahigh strength. Acta Mater. 57, 1865–1874 (2009).

    Article  CAS  Google Scholar 

  7. W. Yuan, Y. Tang, X.J. Yang, B. Liu, and Z.P. Wan: Manufacture, characterization and application of porous metal-fiber sintered felt used as mass-transfer-controlling medium for direct methanol fuel cells. Trans. Nonferrous Met. Soc. China 23, 2085–2093 (2013).

    Article  CAS  Google Scholar 

  8. W. Zhou, Y. Tang, Z.P. Wan, L.S. Lu, Y. Chi, and M.Q. Pan: Preparation of oriented linear copper fiber sintered felt and its performance. Trans. Nonferrous Met. Soc. China 17, 1028–1033 (2007).

    Article  CAS  Google Scholar 

  9. W. Zhou, Y. Tang, M.Q. Pan, X.L. Wei, and J.H. Xiang: Experimental investigation on uniaxial tensile properties of high-porosity metal fiber sintered sheet. Mater. Sci. Eng., A 525, 133–137 (2009).

    Article  Google Scholar 

  10. J.C. Tan and T.W. Clyne: Ferrous fibre network materials for jet noise reduction in eroengines part II: Thermo-mechanical stability. Adv. Eng. Mater. 10, 201–209 (2008).

    Article  CAS  Google Scholar 

  11. A.E. Markaki, V. Gergely, A. Cockburn, and T.W. Clyne: Production of a highly porous materials by liquid phase sintering of short ferritic stainless steel fibres and a preliminary study of its mechanical behavior. Compos. Sci. Technol. 63, 2345–2351 (2003).

    Article  CAS  Google Scholar 

  12. P. Liu, G. He, and L.H. Wu: Uniaxial tensile stress–strain behavior of entangled steel wire material. Mater. Sci. Eng., A 509, 69–75 (2009).

    Article  Google Scholar 

  13. J.C. Qiao, Z.P. Xi, H.P. Tang, J.Y. Wang, and J.L. Zhu: Influence of porosity on quasi-static compressive properties of porous metal media fabricated by stainless steel fibers. Mater. Des. 30, 2737–2740 (2009).

    Article  CAS  Google Scholar 

  14. P. Liu, G. He, and L.H. Wu: Fabrication of sintered steel wire mesh and its compressive properties. Mater. Sci. Eng., A 489, 21–28 (2008).

    Article  Google Scholar 

  15. P. Liu, G. He, and L.H. Wu: Impact behavior of entangled steel wire material. Mater. Charact. 60, 900–906 (2009).

    Article  CAS  Google Scholar 

  16. P. Liu, Q.B. Tan, L.H. Wu, and G. He: Compressive and pseudo-elastic hysteresis behavior of entangled titanium wire materials. Mater. Sci. Eng., A 52, 3301–3309 (2010).

    Article  Google Scholar 

  17. Q. Tan, P. Liu, C. Du, L.H. Wu, and G. He: Mechanical behaviors of quasi-ordered entangled aluminum alloy wire material. Mater. Sci. Eng., A 527, 38–44 (2009).

    Article  Google Scholar 

  18. M.G. Lee, G.D. Ko, J.Y. Song, and K.J. Kang: Compressive characteristics of a wire-woven cellular metal. Mater. Sci. Eng., A 539, 185–193 (2012).

    Article  CAS  Google Scholar 

  19. F. Wu, Z.Y. Zhou, L.Y. Duan, and Z.Y. Xiao: Processing, structural characterization and comparative studies on uniaxial tensile properties of a new type of porous twisted wire material. Materials 8 (9), 5606–5620 (2015).

    Article  Google Scholar 

  20. A. Jean and K. Gupta: Liquid extrusion techniques for pore structure evaluation of nonwovens. Int. Nonwovens J. 12, 45–53 (2003).

    Google Scholar 

  21. B. Tang, Y. Tang, R. Zhou, L.S. Lu, and X.M. Qu: Low temperature solid-phase sintering of sintered metal fibrous media with high specific surface area. Trans. Nonferrous Met. Soc. China 21, 1755–1760 (2011).

    Article  CAS  Google Scholar 

  22. Q.B. Tan and G. He: Stretching behaviors of entangled materials with spiral wire structure. Mater. Des. 46, 61–65 (2013).

    Article  Google Scholar 

  23. M. Zhang, G.Y. Zu, G.C. Yao, and Y.H. Liu: Preparation impact properties and of aluminum foam sandwich panels. Trans. Nonferrous Met. Soc. China 60 (3), 14–17 (2008).

    CAS  Google Scholar 

  24. G.Y. Zu, J. Liu, X.B. Li, and S.L. Sun: Research on the low-velocity impact performance of aluminum foam sandwich panels. J. Northeast. Univ. 35 (11), 1583–1587 (2014).

    CAS  Google Scholar 

  25. G.P. Zou, Z.L. Chang, R.H. Ming, P.X. Xia, and Q. Wang: Study on impact performances of sandwich panel with foam aluminum. Acta Armamentarii S2, 276–279 (2009).

    Google Scholar 

  26. D. Zhou and W.J. Stronge: Mechanical properties of fibrous core sandwich panels. Int. J. Mech. Sci. 47 (4–5), 775–798 (2005).

    Article  Google Scholar 

  27. T.W. Clyne, A.E. Markaki, and J.C. Tan: Mechanical and magnetic properties of metal fibre networks with and without a polymeric matrix. Compos. Sci. Technol. 65 (15–16), 2492–2499 (2005).

    Article  CAS  Google Scholar 

  28. M. Kiser, M.Y. He, and F.W. Zok: The mechanical response of ceramic microballoon reinforced aluminum matrix composites under compressive loading. Acta Mater. 47 (9), 2685–2694 (1999).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research work was supported by the Science and Technology Program of Guangzhou, China (No. 201604016015) and National Natural Science Foundation of China (No. 51274103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liuyang Duan.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Duan, L. & Wu, F. Investigation of Charpy impact behavior of porous twisted wire material. Journal of Materials Research 32, 2276–2285 (2017). https://doi.org/10.1557/jmr.2017.195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.195

Navigation