Skip to main content
Log in

Fabrication, formation mechanism and properties of three-dimensional nanoporous titanium dealloyed in metallic powders

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present a novel route to fabricate 3D nanoporous α-Ti foams by dealloying of TiCu master alloy in solid state using Mg powders. Pure open-cell nanoporous α-Ti foams are fabricated with BET surface area of 34.4 ± 0.8 m2/g and pore size in the range of 2–50 nm. The dealloying using powders is a solid state chemical reaction process to form Cu2Mg phase and Ti/Mg nanocomposites. The constituent of Cu in the TiCu alloy was dissolved into Mg powders thanks to the kinetics of interface reaction and volume diffusion. The pore-forming mechanism is a solid-state interdiffusion process. The ligament coarsening is from 492 to 650 nm with increasing of the dealloying temperature. The hardness and elastic modulus in nanoporous α-Ti foam follow linear decay fit with ligament size increasing. Our results demonstrate a facile strategy for the fabrication of nanoporous Ti foams with novel nanostructures and tailored properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. B.C. Tappan, S.A. Steiner, III, and E.P. Luther: Nanoporous metal foams. Angew. Chem., Int. Ed. 49, 4544 (2010).

    Article  CAS  Google Scholar 

  2. H.J. Jin, X.L. Wang, S. Parida, K. Wang, M. Seo, and J. Weissmuller: Nanoporous Au–Pt alloys as large strain electrochemical actuators. Nano Lett. 10, 187 (2010).

    Article  CAS  Google Scholar 

  3. X. Li, Q. Chen, I. McCue, J. Snyder, P. Crozier, J. Erlebacher, and K. Sierzdzki: Dealloying of noble-metal alloy nanoparticles. Nano Lett. 14, 2569 (2014).

    Article  CAS  Google Scholar 

  4. S. Ghosh: Switching magnetic order in nanoporous Pd–Ni by electrochemical charging. J. Mater. Res. 28, 3010 (2013).

    Article  CAS  Google Scholar 

  5. Z. Qi and J. Weissmueller: Hierarchical nested-network nanostructure by dealloying. ACS Nano 7, 5948 (2013).

    Article  CAS  Google Scholar 

  6. J. Erlebacher, M.J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzk: Evolution of nanoporosity in dealloying. Nature 410, 450 (2001).

    Article  CAS  Google Scholar 

  7. K. Shin, K.A. Leach, J.T. Goldbach, D.H. Kim, J.Y. Jho, M. Tuominen, C.J. Hawker, and T.P. Russell: A simple route to metal nanodots and nanoporous metal films. Nano Lett. 2, 933 (2002).

    Article  CAS  Google Scholar 

  8. O. Naeth, A. Stephen, J. Roesler, and F. Vollertsen: Structuring of nanoporous nickel-based superalloy membranes via laser etching. J. Mater. Process. Technol. 209, 4739 (2009).

    Article  CAS  Google Scholar 

  9. B.C. Tappan, M.H. Huynh, M.A. Hiskey, D.E. Chavez, E.P. Luther, J.T. Mang, and S.F. Son: Ultralow-density nanostructured metal foams: combustion synthesis, morphology, and composition. J. Am. Chem. Soc. 128, 6589 (2006).

    Article  CAS  Google Scholar 

  10. Z. Qi, U. Vainio, A. Kornowski, M. Ritter, H. Weller, H. Jin, and J. Weissmueller: Porous gold with a nested-network architecture and ultrafine structure. Adv. Funct. Mater. 25, 2530 (2015).

    Article  CAS  Google Scholar 

  11. J.C. Thorp, K. Sieradzki, L. Tang, P.A. Crozier, A. Misra, M. Nastasi, D. Mitlin, and S.T. Picraux: Formation of nanoporous noble metal thin films by electrochemical dealloying of PtxSi1 x. Appl. Phys. Lett. 88, 033110 (2006).

    Article  Google Scholar 

  12. M. Hakamada and M. Mabuchi: Fabrication of nanoporous palladium by dealloying and its thermal coarsening. J. Alloys Compd. 479, 326 (2009).

    Article  CAS  Google Scholar 

  13. Y. Tang, Y. Liu, L. Lian, X. Zhou, and L. He: Formation of nanoporous copper through dealloying of dual-phase Cu–Mn–Al alloy: The evolution of microstructure and composition. J. Mater. Res. 27, 2771 (2012).

    Article  CAS  Google Scholar 

  14. M. Hakamada and M. Mabuchi: Preparation of nanoporous Ni and Ni–Cu by dealloying of rolled Ni–Mn and Ni–Cu–Mn alloys. J. Alloys Compd. 485, 583 (2009).

    Article  CAS  Google Scholar 

  15. F. Zhang, A. Weidmann, J.B. Nebe, U. Beck, and E. Burkel: Preparation, microstructures, mechanical properties and cytocompatibility of TiMn alloys for biomedical applications. J. Biomed. Mater. Res., B 94, 406 (2010).

    Google Scholar 

  16. T. Wada, K. Yubuta, A. Inoue, and H. Kato: Dealloying by metallic melt. Mater. Lett. 65, 1076 (2011).

    Article  CAS  Google Scholar 

  17. N.T. Panagiotopoulos, A. Moreira Jorge, I. Rebai, K. Georgarakis, W.J. Botta, and A.R. Yavari: Nanoporous titanium obtained from a spinodally decomposed Ti alloy. Microporous Mesoporous Mater. 222, 26 (2016).

    Article  Google Scholar 

  18. H. Tsuchiya, S. Berger, and J.M. Macak: Self-organized porous and tubular oxide layers on TiAl alloys. Electrochem. Commun. 9, 2397 (2007).

    Article  CAS  Google Scholar 

  19. H. Abe, K. Sato, H. Nishikawa, T. Takemoto, M. Fukuhara, and A. Inoue: Dealloying of Cu–Zr–Ti bulk metallic glass in hydrofluoric acid solution. Mater. Trans. 50, 1255–1258 (2009).

    Article  CAS  Google Scholar 

  20. M. Tsuda, T. Wada, and H. Kato: Kinetics of formation and coarsening of nanoporous-titanium dealloyed with Mg melt. J. Appl. Phys. 114, 113503 (2013).

    Article  Google Scholar 

  21. T. Wada, A.D. Setyawan, K. Yubuta, and H. Kato: Nano- to submicro-porous beta-Ti alloy prepared from dealloying in a metallic melt. Script. Mater. 65, 532 (2011).

    Article  CAS  Google Scholar 

  22. J.W. Kim, M. Tsuda, T. Wada, K. Yubuta, S.G. Kim, and H. Kato: Optimizing niobium dealloying with metallic melt to fabricate porous structure for electrolytic capacitors. Acta Mater. 84, 497 (2015).

    Article  CAS  Google Scholar 

  23. T. Wada and H. Kato: Three-dimensional open-cell macroporous iron, chromium and ferritic stainless steel. Scr. Mater. 68, 723 (2013).

    Article  CAS  Google Scholar 

  24. Y.K. Chen-Wiegart, T. Wada, N. Butakov, X. Xiao, F. De Carlo, H. Kato, J. Wang, D.C. Dunand, and E. Maire: 3D morphological evolution of porous titanium by X-ray micro- and nano-tomography. J. Mater. Res. 28, 2444 (2013).

    Article  CAS  Google Scholar 

  25. D.C. Dunand: Processing of titanium foams. Adv. Eng. Mater. 6, 369 (2004).

    Article  CAS  Google Scholar 

  26. F. Zhang, E. Otterstein, and E. Burkel: Spark plasma sintering, microstructures and mechanical properties of macroporous titanium foams. Adv. Eng. Mater. 12, 863 (2010).

    Article  CAS  Google Scholar 

  27. O. Guillon, J.G. Julian, B. Dargatz, T. Kessel, G. Schierning, J. Rathel, and M. Herrmann: Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv. Eng. Mater. 16, 830 (2014).

    Article  CAS  Google Scholar 

  28. F. Zhang, M. Reich, O. Kessler, and E. Burkel: Potential of rapid cooling spark plasma sintering for metallic materials. Mater. Today 16, 192–195 (2013).

    Article  CAS  Google Scholar 

  29. A. Takeuchi and A. Inoue: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).

    Article  CAS  Google Scholar 

  30. J. Erlebacher and R. Seshadri: Hard materials with tunable porosity. MRS Bull. 34, 561 (2009).

    Article  CAS  Google Scholar 

  31. K. Meguro, M. O, and M. Kajihara: Growth behavior of compounds due to solid-state reactive diffusion between Cu and Al. J. Mater. Sci. 47, 4955–4964 (2012).

    Article  CAS  Google Scholar 

  32. Y.L. Corcoran, A.H. King, N.D. Lanerolle, and B. Kim: Grain boundary diffusion and growth of titanium silicide layers on silicon. J. Electron. Mater. 19, 1177 (1990).

    Article  CAS  Google Scholar 

  33. O. Taguchi, Y. Iijima, and K. Hirono: Reaction diffusion in the Cu–Ti system. J. Jpn. Inst. Met. 54, 619 (1990).

    Article  CAS  Google Scholar 

  34. M. Hakamada and M. Mabuchi: Mechanical strength of nanoporous gold fabricated by dealloying. Scr. Mater. 56, 1003 (2007).

    Article  CAS  Google Scholar 

  35. T. Wada, K. Yubuta, and H. Kato: Evolution of a biocontinuous nanostructure via a solid-state interfacial dealloying reaction. Scr. Mater. 118, 33 (2016).

    Article  CAS  Google Scholar 

  36. B.S. Necula, I. Apachitei, L.E. Fratila-Apachitei, E.J. van Langelaan, and J. Duszczyk: Titanium bone implants with superimposed micro/nano-scale porosity and antibacterial capability. Appl. Surf. Sci. 273, 310 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the financial supports from the State Key Laboratory for Powder Metallurgy at Central South University, Natural Science Foundation of Jiangsu Province (No. BK20161419), Scientific Research Foundation for the Returned Overseas Chinese Scholars at State Education Ministry (No. 2015-1098), National Natural Science Foundation of China (No. 11572087), Jiangsu Key Laboratory for Advanced Metallic Materials (No. BM2007204) at Southeast University, and the Fundamental Research Funds for the Central Universities (No. 2242016K40013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Li, P., Yu, J. et al. Fabrication, formation mechanism and properties of three-dimensional nanoporous titanium dealloyed in metallic powders. Journal of Materials Research 32, 1528–1540 (2017). https://doi.org/10.1557/jmr.2017.19

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.19

Navigation