In Chan et al.1, references 3–17 had several errors and mislabels. The following list is the corrected references:

  1. 3.

    L.Y. Beaulieu, T.D. Hatchard, A. Bonakdarpour, M.D. Fleischauer, and J.R. Dahn: Reaction of Li with alloy thin films studied by in situ AFM. J. Electrochem. Soc.150(11), A1457 (2003).

  2. 4.

    A. Timmons and J.R. Dahn: In situ optical observations of particle motion in alloy negative electrodes for Li-ion batteries. J. Electrochem. Soc.153, A1206 (2006).

  3. 5.

    S.D. Beattie, D. Larcher, M. Morcrette, B. Simon, and J.-M. Tarascon: Si electrodes for Li-ion batteries − A new way to look at an old problem. J. Electrochem. Soc.155(2), A158 (2008).

  4. 6.

    V.A. Sethuraman, M.J. Chon, M. Shimshak, V. Srinivasan, and P.R. Guduru: In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources195, 5062 (2010).

  5. 7.

    J.Y. Eom, J.W. Park, H.S. Kwon, and S. Rajendran: Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling. J. Electrochem. Soc.153(9), A1678 (2006).

  6. 8.

    Y. Zhang, X.G. Zhang, H.L. Zhang, Z.G. Zhao, F. Li, C. Liu, and H.M. Cheng: Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim. Acta51, 4994 (2006).

  7. 9.

    Y. Zhang, Z.G. Zhao, X.G. Zhang, H.L. Zhang, F. Li, C. Liu, and H.M. Cheng: Pyrolytic carbon-coated silicon/carbon nanotube composites: promising application for Li-ion batteries. Int. J. Nanomanuf.2(1/2), 4 (2008).

  8. 10.

    J.H. Ryu, J.W. Kim, Y.-E. Sung, and S.M. Oh: Failure Modes of Silicon Powder Negative Electrode in Lithium Secondary Batteries. Electrochem. Solid-State Lett.7(10), A306 (2004).

  9. 11.

    R.A. Huggins and W.D. Nix: Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics6, 57 (2000).

  10. 12.

    J. Graetz, C.C. Ahn, R. Yazami, and B. Fultz: Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett.6(9), A194 (2003).

  11. 13.

    T. Takamura, S. Ohara, M. Uehara, J. Suzuki, and K. Sekine: A vacuum deposited Si film having a Li extraction capacity over 2000 mAh/g with a long cycle life. J. Power Sources129, 96 (2004).

  12. 14.

    H. Kim, B. Han, J. Choo, and J. Cho: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem. Int. Ed.47, 1 (2008).

  13. 15.

    M. Green, E. Fielder, B. Scrosati, M. Wachtler, and J.S. Moreno: Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett.6(5), A75 (2003).

  14. 16.

    C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui: High performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol.3, 31 (2008).

  15. 17.

    L.-F. Cui, R. Ruffo, C.K. Chan, H. Peng, and Y. Cui: Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett9, 491 (2009).

The authors regret these errors.