Skip to main content
Log in

Role of Cr-d states in the electronic and optical properties of the CdCr2X4 (X = S, Se) normal ferromagnetic spinels using PBE+U and TB-mBJ potentials

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We have investigated theoretically the role of Cr-d states in the electronic and optical properties of the CdCr2X4 (X = S, Se) normal ferromagnetic spinels using the framework of an all-electron full-potential linearized augmented plane wave method. The calculations are performed using Coulomb corrected Perdew–Burke–Ernzerhof (PBE+U) and Tran–Blaha modified-Becke–Johnson (TB-mBJ) approximations with the adding of spin–orbit coupling in both schemes. The lattice parameters have been optimized and are in agreement with the existing experimental values. We found band gap values 1.606 eV and 0.972 eV of CdCr2X4 (X = S, Se), respectively, using the TB-mBJ scheme. Analysis of the site and momentum projected densities shows that the larger splitting of Cr-d states is responsible for the larger band gap by the use of the TB-mBJ scheme. Optical properties along the directions of lattice constants are studied on the basis of band to band transitions. We found the isotropic nature of the optical properties. Reflectivity stays low up to 1.6 eV, consistent with the energy gaps obtained using the TB-mBJ scheme in both the compounds. The refractive index, n (ω), and the extinction coefficient, k (ω), are also studied by the PBE and the TB-mBJ schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. I. Ahmad, B. Amin, M. Maqbool, S. Muhammad, G. Murtaza, S. Ali, and N.A. Noor: Optoelectronic response of GeZn2O4 through the modified Becke–Johnson potential. Chin. Phys. Lett. 29, 097012 (2012).

    Google Scholar 

  2. F. Semari, R. Khenata, M. Rabah, A. Bouhemadou, S.B. Omran, A.H. Reshak, and D. Rached: Full potential study of the elastic, electronic, and optical properties of spinels MgIn2S4 and CdIn2S4 under pressure effect. J. Solid State Chem. 183, 2818 (2010).

    Article  CAS  Google Scholar 

  3. M. Dekkers, G. Rijnders, and D.H.A. Blank: ZnIr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc-d6-transition metal oxide. Appl. Phys. Lett. 90, 021903 (2007).

    Article  CAS  Google Scholar 

  4. H.J. Kim, I.C. Song, J.H. Sim, H. Kim, D. Kim, Y.E. Ihm, and W.K. Choo: Electrical and magnetic properties of spinel type magnetic semiconductor ZnCo2O4 grown by reactive magnetron sputtering. Solid State Commun. 129, 627 (2004).

    Article  CAS  Google Scholar 

  5. H. Mizoguchi, M. Hirano, S. Fujitsu, T. Takeuchi, K. Ueda, and H. Hosono: ZnRh2O4: A p-type semiconducting oxide with a valence band composed of a low spin state of Rh3+ in a 4d6 configuration. Appl. Phys. Lett. 80, 1207 (2002).

    Article  CAS  Google Scholar 

  6. X. Wei, D. Chen, and W. Tang: Preparation and characterization of the spinel oxide ZnCo2O4 obtained by sol–gel method. Mater. Chem. Phys. 103, 54 (2007).

    Article  CAS  Google Scholar 

  7. A. Bouhemadou, F. Zerarga, A. Almuhayya, and S.B. Omran: FP-LAPW study of the fundamental properties of the cubic spinel CdAl2O4. Mater. Res. Bull. 46, 2252 (2011).

    Article  CAS  Google Scholar 

  8. M. Yousaf, M.A. Saeed, A.R.M. Isa, A. Shaari, and H.A.R. Aliabad: Electronic band structure and optical parameters of spinel SnMg2O4 by modified Becke–Johnson potential. Chin. Phys. Lett. 29, 107401 (2012).

    Article  CAS  Google Scholar 

  9. H. Dixit, R. Saniz, S. Cottenier, D. Lamoen, and B. Partoens: Electronic structure of transparent oxides with the Tran-Blaha modified Becke–Johnson potential. J. Phys.: Condens. Matter 24, 205503 (2012).

    CAS  Google Scholar 

  10. M.N. Amini, H. Dixit, R. Saniz, D. Lamoen, and B. Partoens: The origin of p-type conductivity in ZnM2O4 (M = Co, Rh, Ir) spinels. Phys. Chem. Chem. Phys. 16, 2588 (2014).

    Article  CAS  Google Scholar 

  11. M. Stoica and C.S. Lo: p-Type zinc oxide spinels: Application to transparent conductors and spintronics. arXiv: 1312.1728v1.

  12. F. Zerarga, A. Bouhemadou, R. Khenata, and S.B. Omran: Structural, electronic and optical properties of spinel oxides ZnAl2O4, ZnGa2O4 and ZnIn2O4. Solid State Sci. 13, 1638 (2011).

    Article  CAS  Google Scholar 

  13. B. Amin, R. Khenata, A. Bouhemadou, I. Ahmad, and M. Maqbool: Opto-electronic response of spinels MgAl2O4 and MgGa2O4 through modified Becke–Johnson exchange potential. Phys. B 407, 2588 (2012).

    Article  CAS  Google Scholar 

  14. Y. Sharma and P. Srivastava: Electronic, optical and transport properties of α-, β- and γ-phases of spinel indium sulphide: An ab initio study. Mater. Chem. Phys. 135, 385 (2012).

    Article  CAS  Google Scholar 

  15. D.J. Singh, R.C. Rai, J.L. Musfeldt, S. Auluck, N. Singh, P. Khalifah, S. McClure, and D.G. Mandrus: Optical properties and electronic structure of spinel ZnRh2O4. Chem. Mater. 18, 2696 (2006).

    Article  CAS  Google Scholar 

  16. N. Singh and U. Schwinggenschlogl: ZnIr2O4: An efficient photocatalyst with Rashba splitting. Europhys. Lett. 104, 37002 (2013).

    Article  CAS  Google Scholar 

  17. S. Samanta and S.M. Saini: Full potential study of electronic and optical properties of transparent oxide ZnCo2O4 by use of PBE and TB-mBJ potentials. J. Electron. Mater. 48, 3659 (2014).

    Article  CAS  Google Scholar 

  18. Landolt-Börnstein: Magnetic and other properties of oxides and related compounds. In New Series, Vol. III/4b, K-H. Hellwege, ed. (Springer, Berlin-Heidelberg, 1970).

    Google Scholar 

  19. V. Samohvalov: PAC investigations of ferromagnetic spinel semiconductors. Ph.D. Dissertation, The Technical University of Freiberg (2003).

  20. Y.D. Park, A.T. Hanbicki, J.E. Mattson, and B.T. Jonker: Epitaxial growth of an n-type ferromagnetic semiconductor CdCr2Se4 on GaAs (001) and GaP (001). Appl. Phys. Lett. 81, 1471 (2002).

    Article  CAS  Google Scholar 

  21. K.G. Nikiforov: Magnetically ordered multinary semiconductors. Prog. Cryst. Growth Charact. Mater. 39, 1–104 (1999).

    Article  CAS  Google Scholar 

  22. T.H. Lee, T. Coburn, and R. Gluck: Infrared optical properties and Faraday rotation of ferromagnetic HgCr2Se4. Solid State Commun. 9, 1821 (1971).

    Article  CAS  Google Scholar 

  23. S. Shanthi, P. Mahadevan, and D.D. Sarma: Electronic band structure of cadmium chromium chalcogenide spinels: CdCr2S4 and CdCr2Se4. J. Solid State Chem. 155, 198 (2000).

    Article  CAS  Google Scholar 

  24. Y-H.A. Wang, A. Gupta, M. Chshiev, and W.H. Butler: Half-metallic electronic structures of quaternary ferromagnetic chalcospinels: CdxCu1−xCr2S4CdxCu1−xCr2S4 and CdxCu1−xCr2Se4CdxCu1−xCr2Se4. Appl. Phys. Lett. 92, 062507 (2008).

    Article  CAS  Google Scholar 

  25. C.J. Fennie and K.M. Rabe: Polar phonons and intrinsic dielectric response of the ferromagnetic insulating spinel CdCr2S4 from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 72, 214123 (2005).

    Article  CAS  Google Scholar 

  26. K. Ohgushi, Y. Okimoto, T. Ogasawara, S. Miyasaka, and Y.M. Tokura: Magnetic, optical and magneto-optical properties of spinel-type ACr2X4 (A = Mn, Fe, Co, Cu, Zn, Cd; X = O, S, Se). J. Phys. Soc. Jpn. 77, 034713 (2008).

    Article  CAS  Google Scholar 

  27. F. Tran and P. Blaha: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009).

    Article  CAS  Google Scholar 

  28. D. Koller, F. Tran, and P. Blaha: Merits and limits of the modified Becke–Johnson exchange potential. Phys. Rev. B: Condens. Matter Mater. Phys. 83, 195134 (2011).

    Article  CAS  Google Scholar 

  29. A.H. Reshak, H. Kamaruddin, and S. Auluck: Acentric nonlinear optical 2,4-dihydroxyl hydrazone isomorphic crystals with large linear, nonlinear optical susceptibilities and hyperpolarizability. J. Phys. Chem. B 116, 4677 (2012).

    Article  CAS  Google Scholar 

  30. A.H. Reshak, H. Kamaruddin, I.V. Kityk, and S. Auluck: Dispersion of linear, nonlinear optical susceptibilities and hyperpolarizability of C11H8N2O (o-methoxydicyanovinylbenzene) crystals. J. Phys. Chem. B 116, 13338 (2012).

    Article  CAS  Google Scholar 

  31. G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjostedt, and L. Nordstrom: Efficient linearization of the augmented plane-wave method. Phys. Rev. B: Condens. Matter Mater. Phys. 64, 195134 (2001).

    Article  CAS  Google Scholar 

  32. E. Sjostedt, L. Nordstrom, and D.J. Singh: An alternative way of linearizing the augmented plane-wave method. Solid State Commun. 114, 15 (2000).

    Article  CAS  Google Scholar 

  33. K. Schwarz, P. Blaha, and G.K.H. Madsen: Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147, 71 (2002).

    Article  Google Scholar 

  34. V.I. Anisimov, J. Zaanen, and O.K. Andersen: Band theory and Mott insulators: Hubbard U instead of Stoner. Phys. Rev. B: Condens. Matter Mater. Phys. 44, 943 (1991).

    Article  CAS  Google Scholar 

  35. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, and G.A. Sawatzky: Density-functional theory and NiO photoemission spectra. Phys. Rev. B: Condens. Matter Mater. Phys. 48, 16929 (1993).

    Article  CAS  Google Scholar 

  36. P. Hohenberg and W. Kohn: Inhomogeneous electron gas. Phys. Rev. 36, 864 (1964).

    Article  Google Scholar 

  37. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz: WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Techn. Universitat WIEN, Austria, 2001).

    Google Scholar 

  38. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  39. H.D. Monkhorst and J.D. Pack: Special points for Brillouin-zone integrations. Phys. Rev. B: Condens. Matter Mater. Phys. 13, 5188 (1976).

    Article  Google Scholar 

  40. P.E. Blochl, O. Jepson, and O.K. Anderson: Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B: Condens. Matter Mater. Phys. 49, 16223 (1994).

    Article  CAS  Google Scholar 

  41. A.N. Yaresko: Electronic band structure and exchange coupling constants in ACr2X4 spinels (A = Zn, Cd, Hg; X = O, S, Se). Phys. Rev. B: Condens. Matter Mater. Phys. 77, 115106 (2008).

    Article  CAS  Google Scholar 

  42. K. Sato: Crystal growth and characterization of magnetic semiconductors. In Advances in Crystal Growth Research, K. Sato, Y. Furukawa, and K. Nakajima, eds. (Elsevier, Amsterdam, 2001); pp. 303–309.

    Chapter  Google Scholar 

  43. H.B. Zhao, Y.H. Ren, G. Lupke, A.T. Hanbicki, and B.T. Jonker: Band offsets at CdCr2Se4–(AlGa)As and CdCr2Se4–ZnSe interfaces. Appl. Phys. Lett. 82, 1422 (2003).

    Article  CAS  Google Scholar 

  44. D. Santos-Carballal, A. Roldan, R. Grau-Crespo, and N.H. De Leeuw: First-principles study of the inversion thermodynamics and electronic structure of FeM2X4 (thio) spinels (M = Cr, Mn, Co, Ni; X = O, S). Phys. Rev. B: Condens. Matter Mater. Phys. 91, 195106 (2015).

    Article  CAS  Google Scholar 

  45. F. Wooten: Optical Properties of Solids (Academic Press, New York, 1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapan Mohan Saini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samanta, S., Saini, S.M. Role of Cr-d states in the electronic and optical properties of the CdCr2X4 (X = S, Se) normal ferromagnetic spinels using PBE+U and TB-mBJ potentials. Journal of Materials Research 32, 2431–2437 (2017). https://doi.org/10.1557/jmr.2017.159

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.159

Navigation