Skip to main content

Advertisement

Log in

Graphene-based electronic biosensors

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

As an atomic-thick layer material, graphene has a large specific surface area, high electron mobility, and high sensitivity to electronic perturbations from the binding of molecules, all of which are attractive properties for developing electronic sensing devices. This article focuses on graphene-based electronic sensors [field effect transistor (FET) sensors] for detecting biomolecules, including DNA, protein, and bacteria, among others. This article will cover three morphologies of graphene materials in biosensing applications: graphene nanosheet, graphene nanoribbon, and vertically-aligned graphene. The unique structure and electronic properties of graphene enable the FET sensor for the low concentration and rapid detection of biomolecules, thereby addressing the limitations of conventional optical sensing technologies such as ELISA, Western Blot, and electrochemical method. The advantages of graphene-based sensing technology are highlighted and recent progress on graphene-based electronic sensors for detecting biomolecules is reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1.
FIG. 2.
FIG. 3.
FIG. 4.
FIG. 5.
FIG. 6.
FIG. 7.
FIG. 8.

Similar content being viewed by others

References

  1. S. Mao, J. Chang, G. Zhou, and J. Chen: Nanomaterial-enabled rapid detection of water contaminants. Small 11(40), 5336 (2015).

    Article  CAS  Google Scholar 

  2. A. Zhang and C.M. Lieber: Nano-bioelectronics. Chem. Rev. 116(1), 215 (2016).

    Article  CAS  Google Scholar 

  3. R. Freeman, T. Finder, R. Gill, and I. Willner: Probing protein kinase (CK2) and alkaline phosphatase with CdSe/ZnS quantum dots. Nano Lett. 10(6), 2192 (2010).

    Article  CAS  Google Scholar 

  4. J.A. Hansen, J. Wang, A.N. Kawde, Y. Xiang, K.V. Gothelf, and G. Collins: Quantum-dot/aptamer-based ultrasensitive multi-analyte electrochemical biosensor. J. Am. Chem. Soc. 128(7), 2228 (2006).

    Article  CAS  Google Scholar 

  5. Z. Li, Y. Wang, J. Wang, Z. Tang, J.G. Pounds, and Y. Lin: Rapid and sensitive detection of protein biomarker using a portable fluorescence biosensor based on quantum dots and a lateral flow test strip. Anal. Chem. 82(16), 7008 (2010).

    Article  CAS  Google Scholar 

  6. X-Y. Lang, H-Y. Fu, C. Hou, G-F. Han, P. Yang, Y-B. Liu, and Q. Jiang: Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat. Commun. 4, 2169 (2013).

    Article  CAS  Google Scholar 

  7. G. Liu, X. Mao, J.A. Phillips, H. Xu, W. Tan, and L. Zeng: Aptamer-nanoparticle strip biosensor for sensitive detection of cancer cells. Anal. Chem. 81(24), 10013 (2009).

    Article  CAS  Google Scholar 

  8. X.J. Zhao, L.R. Hilliard, S.J. Mechery, Y.P. Wang, R.P. Bagwe, S.G. Jin, and W.H. Tan: A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 101(42), 15027 (2004).

    Article  CAS  Google Scholar 

  9. Y. Cui, Q.Q. Wei, H.K. Park, and C.M. Lieber: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289 (2001).

    Article  CAS  Google Scholar 

  10. F. Patolsky, G.F. Zheng, and C.M. Lieber: Nanowire-based biosensors. Anal. Chem. 78(13), 4260 (2006).

    Article  CAS  Google Scholar 

  11. G.F. Zheng, F. Patolsky, Y. Cui, W.U. Wang, and C.M. Lieber: Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 23(10), 1294 (2005).

    Article  CAS  Google Scholar 

  12. B.L. Allen, P.D. Kichambare, and A. Star: Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19(11), 1439 (2007).

    Article  CAS  Google Scholar 

  13. J. Chang, S. Mao, Y. Zhang, S. Cui, D.A. Steeber, and J. Chen: Single-walled carbon nanotube field-effect transistors with graphene oxide passivation for fast, sensitive, and selective protein detection. Biosens. Bioelectron. 42, 186 (2013).

    Article  CAS  Google Scholar 

  14. A. Star, J.C.P. Gabriel, K. Bradley, and G. Gruner: Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 3(4), 459 (2003).

    Article  CAS  Google Scholar 

  15. Y. Liu, X. Dong, and P. Chen: Biological and chemical sensors based on graphene materials. Chem. Soc. Rev. 41(6), 2283 (2012).

    Article  CAS  Google Scholar 

  16. W. Yang, K.R. Ratinac, S.P. Ringer, P. Thordarson, J.J. Gooding, and F. Braet: Carbon nanomaterials in Biosensors: Should you use nanotubes or graphene? Angew. Chem., Int. Ed. 49(12), 2114 (2010).

    Article  CAS  Google Scholar 

  17. B. Zhan, C. Li, J. Yang, G. Jenkins, W. Huang, and X. Dong: Graphene field-effect transistor and its application for electronic sensing. Small 10(20), 4042 (2014).

    CAS  Google Scholar 

  18. J. Chang, S. Mao, Y. Zhang, S. Cui, G. Zhou, X. Wu, C-H. Yang, and J. Chen: Ultrasonic-assisted self-assembly of monolayer graphene oxide for rapid detection of Escherichia coli bacteria. Nanoscale 5(9), 3620 (2013).

    Article  CAS  Google Scholar 

  19. A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6(3), 183 (2007).

    Article  CAS  Google Scholar 

  20. S. Mao, G. Lu, and J. Chen: Nanocarbon-based gas sensors: Progress and challenges. J. Mater. Chem. A 2(16), 5573 (2014).

    Article  CAS  Google Scholar 

  21. Q. He, S. Wu, Z. Yin, and H. Zhang: Graphene-based electronic sensors. Chem. Sci. 3(6), 1764 (2012).

    Article  CAS  Google Scholar 

  22. H. Chen, P. Chen, J. Huang, R. Selegard, M. Platt, A. Palaniappan, D. Aili, A.I.Y. Tok, and B. Liedberg: Detection of matrilysin activity using polypeptide functionalized reduced graphene oxide field-effect transistor sensor. Anal. Chem. 88(6), 2994 (2016).

    Article  CAS  Google Scholar 

  23. Z. Gao, H. Kang, C.H. Naylor, F. Streller, P. Ducos, M.D. Serrano, J. Ping, J. Zauberman Rajesh, R.W. Carpick, Y-J. Wang, Y.W. Park, Z. Luo, L. Ren, and A.T.C. Johnson: Scalable production of sensor arrays based on high-mobility hybrid graphene field effect transistors. ACS Appl. Mater. Interfaces 8, 27546 (2016).

    Article  CAS  Google Scholar 

  24. M. Soikkeli, K. Kurppa, M. Kainlauri, S. Arpiainen, A. Paananen, D. Gunnarsson, J.J. Joensuu, P. Laaksonen, M. Prunnila, M.B. Linder, and J. Ahopelto: Graphene biosensor programming with genetically engineered fusion protein monolayers. ACS Appl. Mater. Interfaces 8(12), 8257 (2016).

    Article  CAS  Google Scholar 

  25. C. Zhu, D. Du, and Y. Lin: Graphene-like 2D nanomaterial-based biointerfaces for biosensing applications. Biosens. Bioelectron. 89(Pt 1), 43 (2017).

    Article  CAS  Google Scholar 

  26. X. Dong, Q. Long, J. Wang, M.B. Chan-Park, Y. Huang, W. Huang, and P. Chen: A graphene nanoribbon network and its biosensing application. Nanoscale 3(12), 5156 (2011).

    Article  CAS  Google Scholar 

  27. X. Tan, H-J. Chuang, M-W. Lin, Z. Zhou, and M.M-C. Cheng: Edge effects on the pH response of graphene nanoribbon field effect transistors. J. Phys. Chem. C 117(51), 27155 (2013).

    Article  CAS  Google Scholar 

  28. Z. Bo, S. Mao, Z.J. Han, K. Cen, J. Chen, and K. Ostrikov: Emerging energy and environmental applications of vertically-oriented graphenes. Chem. Soc. Rev. 44(8), 2108 (2015).

    Article  CAS  Google Scholar 

  29. F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, and K.S. Novoselov: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6(9), 652 (2007).

    Article  CAS  Google Scholar 

  30. J.T. Robinson, F.K. Perkins, E.S. Snow, Z. Wei, and P.E. Sheehan: Reduced graphene oxide molecular sensors. Nano Lett. 8(10), 3137 (2008).

    Article  CAS  Google Scholar 

  31. N. Mohanty and V. Berry: Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 8(12), 4469 (2008).

    Article  CAS  Google Scholar 

  32. X. Dong, Y. Shi, W. Huang, P. Chen, and L-J. Li: Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22(14), 1649 (2010).

    Article  CAS  Google Scholar 

  33. X. Dong, W. Huang, and P. Chen: In situ synthesis of reduced graphene oxide and gold nanocomposites for nanoelectronics and biosensing. Nanoscale Res. Lett. 6, 60 (2011).

    Article  CAS  Google Scholar 

  34. Z. Yin, Q. He, X. Huang, J. Zhang, S. Wu, P. Chen, G. Lu, P. Chen, Q. Zhang, Q. Yan, and H. Zhang: Real-time DNA detection using Pt nanoparticle-decorated reduced graphene oxide field-effect transistors. Nanoscale 4(1), 293 (2012).

    Article  CAS  Google Scholar 

  35. X. Zhang, Y. Zhang, Q. Liao, Y. Song, and S. Ma: Reduced graphene oxide-functionalized high electron mobility transistors for novel recognition pattern label-free DNA sensors. Small 9(23), 4045 (2013).

    Article  CAS  Google Scholar 

  36. B. Cai, S. Wang, L. Huang, Y. Ning, Z. Zhang, and G-J. Zhang: Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS Nano 8(3), 2632 (2014).

    Article  CAS  Google Scholar 

  37. J. Ping, R. Vishnubhotla, A. Vrudhula, and A.T.C. Johnson: Scalable production of high-sensitivity, label-free DNA biosensors based on back-gated graphene field effect transistors. ACS Nano 10(9), 8700 (2016).

    Article  CAS  Google Scholar 

  38. Y. Ohno, K. Maehashi, Y. Yamashiro, and K. Matsumoto: Electrolyte-gated graphene field-effect transistors for detecting pH protein adsorption. Nano Lett. 9(9), 3318 (2009).

    Article  CAS  Google Scholar 

  39. Q. He, H.G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang, P. Chen, and H. Zhang: Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano 4(6), 3201 (2010).

    Article  CAS  Google Scholar 

  40. Y. Ohno, K. Maehashi, and K. Matsumoto: Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 132(51), 18012 (2010).

    Article  CAS  Google Scholar 

  41. Q. He, S. Wu, S. Gao, X. Cao, Z. Yin, H. Li, P. Chen, and H. Zhang: Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5(6), 5038 (2011).

    Article  CAS  Google Scholar 

  42. Y. Chen, H. Vedala, G.P. Kotchey, A. Audfray, S. Cecioni, A. Imberty, S. Vidal, and A. Star: Electronic detection of lectins using carbohydrate-functionalized nanostructures: Graphene versus carbon nanotubes. ACS Nano 6(1), 760 (2012).

    Article  CAS  Google Scholar 

  43. O.S. Kwon, S.J. Park, J-Y. Hong, A.R. Han, J.S. Lee, J.S. Lee, J.H. Oh, and J. Jang: Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 6(2), 1486 (2012).

    Article  CAS  Google Scholar 

  44. S.J. Park, O.S. Kwon, S.H. Lee, H.S. Song, T.H. Park, and J. Jang: Ultrasensitive flexible graphene based field-effect transistor (FET)-type bioelectronic nose. Nano Lett. 12(10), 5082 (2012).

    Article  CAS  Google Scholar 

  45. D-J. Kim, I.Y. Sohn, J-H. Jung, O.J. Yoon, N.E. Lee, and J-S. Park: Reduced graphene oxide field-effect transistor for label-free femtomolar protein detection. Biosens. Bioelectron. 41, 621 (2013).

    Article  CAS  Google Scholar 

  46. J. Kim, M-S. Lee, S. Jeon, M. Kim, S. Kim, K. Kim, F. Bien, S.Y. Hong, and J-U. Park: Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures. Adv. Mater. 27(21), 3292 (2015).

    Article  CAS  Google Scholar 

  47. E. Piccinini, C. Bliem, C. Reiner-Rozman, F. Battaglini, O. Azzaroni, and W. Knoll: Enzyme-polyelectrolyte multilayer assemblies on reduced graphene oxide field-effect transistors for biosensing applications. Biosens. Bioelectron. 92, 661 (2016).

    Article  CAS  Google Scholar 

  48. S. Mao, G. Lu, K. Yu, Z. Bo, and J. Chen: Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle-antibody conjugates. Adv. Mater. 22(32), 3521 (2010).

    Article  CAS  Google Scholar 

  49. S. Mao, K. Yu, G. Lu, and J. Chen: Highly sensitive protein sensor based on thermally-reduced graphene oxide field-effect transistor. Nano Res. 4(10), 921 (2011).

    Article  Google Scholar 

  50. B-Y. Kim, I-y. Sohn, D. Lee, G.S. Han, W-I. Lee, H.S. Jung, and N-E. Lee: Ultrarapid and ultrasensitive electrical detection of proteins in a three-dimensional biosensor with high capture efficiency. Nanoscale 7(21), 9844 (2015).

    Article  CAS  Google Scholar 

  51. S.S. Kwon, J. Yi, W.W. Lee, J.H. Shin, S.H. Kim, S.H. Cho, S. Nam, and W.I. Park: Reversible and irreversible responses of defect-engineered graphene-based electrolyte-gated pH sensors. ACS Appl. Mater. Interfaces 8(1), 834 (2016).

    Article  CAS  Google Scholar 

  52. J-L. Her, T-M. Pan, W-Y. Lin, K-S. Wang, and L-J. Li: Label-free detection of alanine aminotransferase using a graphene field-effect biosensor. Sens. Actuators, B 182, 396 (2013).

    Article  CAS  Google Scholar 

  53. U. Ghoshdastider, R. Wu, B. Trzaskowski, K. Mlynarczyk, P. Miszta, M. Gurusaran, S. Viswanathan, V. Renugopalakrishnan, and S. Filipek: Molecular effects of encapsulation of glucose oxidase dimer by graphene. RSC Adv. 5(18), 13570 (2015).

    Article  CAS  Google Scholar 

  54. Y. Huang, X. Dong, Y. Shi, C.M. Li, L-J. Li, and P. Chen: Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2(8), 1485 (2010).

    Article  CAS  Google Scholar 

  55. Y.H. Kwak, D.S. Choi, Y.N. Kim, H. Kim, D.H. Yoon, S-S. Ahn, J-W. Yang, W.S. Yang, and S. Seo: Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens. Bioelectron. 37(1), 82 (2012).

    Article  CAS  Google Scholar 

  56. S. Viswanathan, T.N. Narayanan, K. Aran, K.D. Fink, J. Paredes, P.M. Ajayan, S. Filipek, P. Miszta, H.C. Tekin, F. Inci, U. Demirci, P. Li, K.I. Bolotin, D. Liepmann, and V. Renugopalakrishanan: Graphene–protein field effect biosensors: glucose sensing. Mater. Today 18(9), 513 (2015).

    Article  CAS  Google Scholar 

  57. M. Zhang, C. Liao, C.H. Mak, P. You, C.L. Mak, and F. Yan: Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci. Rep. 5, 8311 (2015).

    Article  CAS  Google Scholar 

  58. T. Kavitha, A.I. Gopalan, K-P. Lee, and S-Y. Park: Glucose sensing, photocatalytic and antibacterial properties of graphene–ZnO nanoparticle hybrids. Carbon 50(8), 2994 (2012).

    Article  CAS  Google Scholar 

  59. P.K. Ang, A. Li, M. Jaiswal, Y. Wang, H.W. Hou, J.T.L. Thong, C.T. Lim, and K.P. Loh: Flow sensing of single cell by graphene transistor in a microfluidic channel. Nano Lett. 11(12), 5240 (2011).

    Article  CAS  Google Scholar 

  60. Y. Huang, X. Dong, Y. Liu, L-J. Li, and P. Chen: Graphene-based biosensors for detection of bacteria and their metabolic activities. J. Mater. Chem. 21(33), 12358 (2011).

    Article  CAS  Google Scholar 

  61. M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik, N. Verma, F.G. Omenetto, and M.C. McAlpine: Graphene-based wireless bacteria detection on tooth enamel. Nat. Commun. 3, 763 (2012).

    Article  CAS  Google Scholar 

  62. G. Lu, K. Yu, Z. Wen, and J. Chen: Semiconducting graphene: converting graphene from semimetal to semiconductor. Nanoscale 5(4), 1353 (2013).

    Article  CAS  Google Scholar 

  63. K. Tamersit and F. Djeffal: Double-gate graphene nanoribbon field-effect transistor for DNA and gas sensing applications: Simulation study and sensitivity analysis. IEEE Sens. J. 16(11), 4180 (2016).

    Article  Google Scholar 

  64. S.K. Min, W.Y. Kim, Y. Cho, and K.S. Kim: Fast DNA sequencing with a graphene-based nanochannel device. Nat. Nanotechnol. 6(3), 162 (2011).

    Article  CAS  Google Scholar 

  65. S. Mao, K. Yu, S. Cui, Z. Bo, G. Lu, and J. Chen: A new reducing agent to prepare single-layer, high-quality reduced graphene oxide for device applications. Nanoscale 3(7), 2849 (2011).

    Article  CAS  Google Scholar 

  66. B. Zhang and T. Cui: Suspended graphene nanoribbon ion-sensitive field-effect transistors formed by shrink lithography for pH/cancer biomarker sensing. J. Microelectromech. Syst. 22(5), 1140 (2013).

    Article  CAS  Google Scholar 

  67. S. Mao, K. Yu, J. Chang, D.A. Steeber, L.E. Ocola, and J. Chen: Direct growth of vertically-oriented graphene for field-effect transistor biosensor. Sci. Rep. 3, 1696 (2013).

    Article  CAS  Google Scholar 

  68. D.H. Seo, A.E. Rider, S. Kumar, L.K. Randeniya, and K. Ostrikou: Vertical graphene gas- and bio-sensors via catalyst-free, reactive plasma reforming of natural honey. Carbon 60, 221 (2013).

    Article  CAS  Google Scholar 

  69. K. Yu, G. Lu, Z. Bo, S. Mao, and J. Chen: Carbon nanotube with chemically bonded graphene leaves for electronic and optoelectronic applications. J. Phys. Chem. Lett. 2(13), 1556 (2011).

    Article  CAS  Google Scholar 

  70. K. Yu, P. Wang, G. Lu, K-H. Chen, Z. Bo, and J. Chen: Patterning vertically oriented graphene sheets for nanodevice applications. J. Phys. Chem. Lett. 2(6), 537 (2011).

    Article  CAS  Google Scholar 

  71. J. Basu and C. RoyChaudhuri: Graphene nanogrids FET immunosensor: Signal to noise ratio enhancement. Sensors 16(10), 1481 (2016).

    Article  CAS  Google Scholar 

  72. C. Mackin and T. Palacios: Large-scale sensor systems based on graphene electrolyte-gated field-effect transistors. Analyst 141(9), 2704 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shun Mao or Junhong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, S., Chen, J. Graphene-based electronic biosensors. Journal of Materials Research 32, 2954–2965 (2017). https://doi.org/10.1557/jmr.2017.129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.129

Navigation