Skip to main content
Log in

Effects of carbon nanotube content on morphology of SiCp(CNT) hybrid reinforcement and tensile mechanical properties of SiCp(CNT)/Al composites

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this work, the high-performance silicon carbide particle SiCp[carbon nanotube (CNT)] hybrid reinforcement is currently explored to develop the advanced metal matrix composites. 17 wt% SiCp(CNT)/Al composites were fabricated by a powder metallurgy technique, in which SiCp(CNT) hybrid reinforcement with various CNT contents (e.g., 3, 6 and 9 wt%) were applied. Effects of CNT content on the morphology of SiCp(CNT) hybrid reinforcement, the microstructural characteristics, and the tensile mechanical behavior of SiCp(CNT)/Al composites were studied as well. Especially, the SiCp(CNT)/Al composites with 6 wt% CNT in SiCp(CNT) hybrid reinforcement exhibited the most significant enhancing effects in the elastic modulus and tensile strength. Meanwhile, the SiCp(CNT)/Al composites produced a synergistic strengthening effect of SiCp and CNT compared to SiCp/Al composites, while the SiCp(CNT)/Al composites with high CNT content in SiCp(CNT) hybrid reinforcement provided weak improvement in the tensile strength and ductility due to the forming agglomeration of CNT in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. D. Miracle: Metal matrix composites—From science to technological significance. Compos. Sci. Technol. 65, 2526 (2005).

    Article  CAS  Google Scholar 

  2. V. Umasankar, M. Anthony Xavior, and S. Karthikeyan: Experimental evaluation of the influence of processing parameters on the mechanical properties of SiC particle reinforced AA6061 aluminium alloy matrix composite by powder processing. J. Alloys Compd. 582, 380 (2014).

    Article  CAS  Google Scholar 

  3. Y. Wu, G.Y. Kim, I.E. Anderson, and T.A. Lograsso: Fabrication of Al6061 composite with high SiC particle loading by semi-solid powder processing. Acta Mater. 58, 4398 (2010).

    Article  CAS  Google Scholar 

  4. M. Rahimian, N. Ehsani, N. Parvin, and H.R. Baharvandi: The effect of particle size, sintering temperature and sintering time on the properties of Al–Al2O3 composites, made by powder metallurgy. J. Mater. Process. Technol. 209, 5387 (2009).

    Article  CAS  Google Scholar 

  5. M.K. Habibi, A.S. Hamouda, and M. Gupta: Hybridizing boron carbide (B4C) particles with aluminum (Al) to enhance the mechanical response of magnesium based nano-composites. J. Alloys Compd. 550, 83 (2013).

    Article  CAS  Google Scholar 

  6. M. Rezayat, M. Bahremand, M. Parsa, H. Mirzadeh, and J. Cabrera: Modification of as-cast Al–Mg/B4C composite by addition of Zr. J. Alloys Compd. 685, 70 (2016).

    Article  CAS  Google Scholar 

  7. K. Oh and K. Han: Short-fiber/particle hybrid reinforcement: Effects on fracture toughness and fatigue crack growth of metal matrix composites. Compos. Sci. Technol. 67, 1719 (2007).

    Article  CAS  Google Scholar 

  8. A.K.M.A. Iqbal, Y. Arai, and W. Araki: Effect of hybrid reinforcement on crack initiation and early propagation mechanisms in cast metal matrix composites during low cycle fatigue. Mater. Des. 45, 241 (2013).

    Article  CAS  Google Scholar 

  9. P. Ravindran, K. Manisekar, S. Vinoth Kumar, and P. Rathika: Investigation of microstructure and mechanical properties of aluminum hybrid nano-composites with the additions of solid lubricant. Mater. Des. 51, 448 (2013).

    Article  CAS  Google Scholar 

  10. S. Suresha and B.K. Sridhara: Friction characteristics of aluminium silicon carbide graphite hybrid composites. Mater. Des. 34, 576 (2012).

    Article  CAS  Google Scholar 

  11. D. Aruri, K. Adepu, K. Adepu, and K. Bazavada: Wear and mechanical properties of 6061-T6 aluminum alloy surface hybrid composites [(SiC + Gr) and (SiC + Al2O3)] fabricated by friction stir processing. J. Mater. Res. Technol. 2, 362 (2013).

    Article  CAS  Google Scholar 

  12. A. Alizadeh, A. Abdollahi, and H. Biukani: Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B4C). J. Alloys Compd. 650, 783 (2015).

    Article  CAS  Google Scholar 

  13. H. Choi, G. Kwon, G. Lee, and D. Bae: Reinforcement with carbon nanotubes in aluminum matrix composites. Scr. Mater. 59, 360 (2008).

    Article  CAS  Google Scholar 

  14. S.C. Tjong: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng., R 74, 281 (2013).

    Article  Google Scholar 

  15. S.R. Bakshi, D. Lahiri, and A. Agarwal: Carbon nanotube reinforced metal matrix composites—A review. Int. Mater. Rev. 55, 41 (2010).

    Article  CAS  Google Scholar 

  16. Z. Li, J.Y. Wang, G.L. Fan, H.H. Pan, Z.X. Chen, and D. Zhang: Reinforcement with graphene nanosheets in aluminum matrix composites. Scr. Mater. 66, 594 (2012).

    Article  Google Scholar 

  17. L. Wang, H. Choi, J-M. Myoung, and W. Lee: Mechanical alloying of multi-walled carbon nanotubes and aluminium powders for the preparation of carbon/metal composites. Carbon 47, 3427 (2009).

    Article  CAS  Google Scholar 

  18. A.M.K. Esawi, K. Morsi, A. Sayed, A.A. Gawad, and P. Borah: Fabrication and properties of dispersed carbon nanotube-aluminum composites. Mater. Sci. Eng., A 508, 167 (2009).

    Article  Google Scholar 

  19. L. Jiang, Z. Li, G. Fan, L. Cao, and D. Zhang: Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes. Scr. Mater. 66, 331 (2012).

    Article  CAS  Google Scholar 

  20. S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, and S.H. Hong: Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv. Mater. 17, 1377 (2005).

    Article  CAS  Google Scholar 

  21. D.H. Nam, S.I. Cha, B.K. Lim, H.M. Park, D.S. Han, and S.H. Hong: Synergistic strengthening by load transfer mechanism and grain refinement of CNT/Al–Cu composites. Carbon 50, 2417 (2012).

    Article  CAS  Google Scholar 

  22. X. Yang, C. Shi, C. He, E. Liu, J. Li, and N. Zhao: Synthesis of uniformly dispersed carbon nanotube reinforcement in Al powder for preparing reinforced Al composites. Composites, Part A 42, 1833 (2011).

    Article  Google Scholar 

  23. C.N. He, N.Q. Zhao, C.S. Shi, and S.Z. Song: Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition. J. Alloys Compd. 487, 258 (2009).

    Article  CAS  Google Scholar 

  24. R. Pérez-Bustamante, C.D. Gómez-Esparza, I. Estrada-Guel, M. Miki-Yoshida, L. Licea-Jiménez, S.A. Pérez-García, and R. Martínez-Sánchez: Microstructural and mechanical characterization of Al-MWCNT composites produced by mechanical milling. Mater. Sci. Eng., A 502, 159 (2009).

    Article  Google Scholar 

  25. Y.S. Suh, S.P. Joshi, and K.T. Ramesh: An enhanced continuum model for size-dependent strengthening and failure of particle-reinforced composites. Acta Mater. 57, 5848 (2009).

    Article  CAS  Google Scholar 

  26. X.Z. Kai, Z.Q. Li, G.L. Fan, Q. Guo, D.B. Xiong, W.L. Zhang, Y.S. Su, W.J. Lu, W.J. Moon, and D. Zhang: Enhanced strength and ductility in particulate-reinforced aluminum matrix composites fabricated by flake powder metallurgy. Mater. Sci. Eng., A 587, 46 (2013).

    Article  CAS  Google Scholar 

  27. K.M.P.V.C. Nardone: On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr. Mater. 20, 43 (1986).

    CAS  Google Scholar 

  28. F. Tang, I.E. Anderson, T. Gnaupel-Herold, and H. Prask: Pure Al matrix composites produced by vacuum hot pressing: Tensile properties and strengthening mechanisms. Mater. Sci. Eng., A 383, 362 (2004).

    Article  Google Scholar 

  29. H. Kurita, M. Estili, H. Kwon, T. Miyazaki, W. Zhou, J-F. Silvain, and A. Kawasaki: Load-bearing contribution of multi-walled carbon nanotubes on tensile response of aluminum. Composites, Part A 68, 133 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to sincerely acknowledge the financial supports of the National Natural Science Foundation of China (Nos. 51471106, 51501111), the National Basic Research Program (973Program) (No. 2012CB619600), and the Foundation of Shanghai Science and Technology Committee of China (Nos. 14DZ2261200, 14520710100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yishi Su or Qiubao Ouyang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Su, Y., Jin, H. et al. Effects of carbon nanotube content on morphology of SiCp(CNT) hybrid reinforcement and tensile mechanical properties of SiCp(CNT)/Al composites. Journal of Materials Research 32, 1239–1247 (2017). https://doi.org/10.1557/jmr.2017.12

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.12

Navigation