Skip to main content
Log in

Effect of precipitates on grain growth in non-oriented silicon steel

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Precipitates and grain sizes in non-oriented silicon steel samples, which were hot-rolled (HR), continuously annealed (CA), and stress-relief-annealed (SA), were characterized using scanning electron microscopy (SEM) equipped with electron back-scattered diffraction. The average grain sizes of the HR, CA, and SA samples were 28, 46, and 46 μm, respectively. SEM observations revealed that the precipitates were mainly dispersed inside grains in the HR and the CA samples, but mainly at grain boundaries in the SA sample. The density of precipitates was highest in the SA sample and lowest in the HR sample. Precipitates at the grain boundaries, which were identified as manganese sulfides, were nearly spherical, their diameter ranging from 0.3 to 0.7 μm. We calculated the pining force exerted by grain-boundary precipitates and found that it outweighed the driving force of the grain growth that was controlled by boundary curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. P.D. Steiner: Non-oriented electrical steel sheets. Mater. Technol. 44, 317 (2010).

    Google Scholar 

  2. A.J. Moses: Electrical steel: Past, present and future developments. IEE Proc., Part A: Phys. Sci., Meas. Instrum., Manage. Educ. 137, 233 (1990).

    CAS  Google Scholar 

  3. G. Lyudkovsky, P.K. Rastogi, and M. Bala: Non-oriented electrical steel. JOM 38, 18 (1986).

    Article  CAS  Google Scholar 

  4. K. Matsumura and R. Fukuda: Recent developments of non-oriented electrical samples. IEEE Trans. Magn. 20, 1533 (1984).

    Article  Google Scholar 

  5. J.A. Szpunar and H.J. Bunge, eds.: Texture, Anisotropy in Magnetic Steel, Directional Properties of Materials (Cuvllier Verlag, Gttingen, 1988); p. 129.

    Google Scholar 

  6. M. Shiozaki and Y. Kurosaki: The effects of grain size on the magnetic properties of non-oriented electrical samples. J. Mater. Eng. 11, 37 (1989).

    Article  CAS  Google Scholar 

  7. Y. Sidor and F. Kovac: Microstructural aspects of grain growth kinetics in non-oriented electrical steel. Mater. Charact. 55, 1 (2005).

    Article  CAS  Google Scholar 

  8. D.S. Petrovic, B. Arh, F. Tehovnik, and M. Pirnat: Magnesium non-metallic precipitates in non-oriented electrical samples. ISIJ Int. 51, 2069 (2011).

    Article  Google Scholar 

  9. C.R. Hutchinson, H.S. Zurob, C.W. Sinclair, and Y.J.M. Brechet: The comparative effectiveness of Nb solute and NbC precipitates at impeding grain-boundary motion in Nb steels. Scr. Mater. 59, 635 (2008).

    Article  CAS  Google Scholar 

  10. S. Lee and B.C.D. Cooman: Effect of phosphorus on the magnetic losses of non-oriented 2% Si steel. ISIJ Int. 52, 1162 (2012).

    Article  CAS  Google Scholar 

  11. T. Irie, K. Matsumura, H. Nakamura, H. Shianaka, and T. Suzuki: Method of producing non-oriented silicon steel sheets having an excellent electromagnetic property. U.S. Patent No. 4 204 890, Washington, DC: U.S. Patent and Trademark Office, 1980.

    Google Scholar 

  12. A. Chojecki and T. Bogacz: Formation of the sulfide inclusions during the solidification of cast Fe–Mn–CS alloys. Mater. Sci. Forum 215, 385 (1996).

    Article  Google Scholar 

  13. K. Oikawa, K. Ishida, and T. Nishizawa: Effect of titanium addition on the formation and distribution of MnS inclusions in steel during solidification. ISIJ Int. 37, 332 (1997).

    Article  CAS  Google Scholar 

  14. Z. Liu, Y. Kobayashi, F. Yin, M. Kuwabara, and K. Nagai: Nucleation of acicular ferrite on sulfide inclusion during rapid solidification of low carbon steel. ISIJ Int. 47, 1781 (2007).

    Article  CAS  Google Scholar 

  15. M. Wakoh, T. Sawai, and S. Mizoguchi: Effect of S content on the MnS precipitation in steel with oxide nuclei. ISIJ Int. 36, 1014 (1996).

    Article  CAS  Google Scholar 

  16. A.S. Osio, S. Liu, and D.L. Olson: The Effect of solidification on the formation and growth of inclusions in low carbon steel welds. Mater. Sci. Eng., A 221, 122 (1996).

    Article  Google Scholar 

  17. C.S. Smith: Grains, phases, interfaces: An interpretation of microstructure. Trans. Metall. Soc. AIME 175, 15 (1948).

    Google Scholar 

  18. T. Gladman: Grain Size Control (Maney Publishers, London, 2004); p. 183. (in England).

    Google Scholar 

  19. A.J. DeArdo, G.A. Ratz, and P.J. Wray: Thermomechanical processing of microalloyed austenite. Proceedings of the International Conference on the Thermomechanical Processing of Microalloyed Austenite (Metall. Soc. AIME, New York, 1982).

    Google Scholar 

  20. N. Sun, B.R. Patterson, J.P. Suni, H. Weiland, and L.F. Allard: Characterization of particle pinning potential. Acta Mater. 54, 4091 (2006).

    Article  CAS  Google Scholar 

  21. E.J. Palmiere, C.I. Garcia, and A.J. DeArdo: Processing, Microstructure and Properties of Microalloyed and Other Modern HSLA Steel (Iron. Steel. Soc. AIME, Warrendale, PA, 1992); p. 113.

    Google Scholar 

  22. S.S. Hansen, J.B. Vander Sande, and M. Cohen: Niobium carbonitride precipitation and austenite recrystallization in hot-rolled microalloyed steel. Metall. Mater. Trans. A 11, 387 (1980).

    Article  Google Scholar 

  23. T. Nakayama and N. Honjou: Effect of aluminum and nitrogen on the magnetic properties of non-oriented semi-processed electrical steel sheet. J. Magn. Magn. Mater. 213, 87 (2000).

    Article  CAS  Google Scholar 

  24. A.V. Karasev and H. Suito: Effect of particle size distribution on austenite grain growth in Fe–0.05 mass% C alloy deoxidized with Mn–Si, Ti, Mg, Zr and Ce. ISIJ Int. 46, 718 (2006).

    Article  CAS  Google Scholar 

  25. A. Titov, R. Inoue, and H. Suito: Grain-growth-inhibiting effects of TiC and ZrC precipitates in Fe–0.15–0. 30 mass% C alloy. ISIJ Int. 48, 301 (2008).

    Article  CAS  Google Scholar 

  26. J. Janis, A. Karasev, K. Nakajima, and P.G. Jőnsson: Effect of secondary nitride particles on grain growth in a Fe–20 mass% Cr alloy deoxidised with Ti and Zr. ISIJ Int. 53, 476 (2013).

    Article  CAS  Google Scholar 

  27. B. Zhou, G. Li, X. Wan, Y. Li, and K. Wu: In situ observation of grain refinement in the simulated heat-affected zone of high-strength low-alloy steel by Zr–Ti combined deoxidation. Met. Mater. Int. 22, 267 (2016).

    Article  CAS  Google Scholar 

  28. B.J. Skromme, Y. Zhang, D.J. Smith, and S. Sivananthan: Growth and characterization of pseudomorphic single crystal zinc blende MnS. Appl. Phys. Lett. 67, 2690 (1995).

    Article  CAS  Google Scholar 

  29. L. Wang, S. Sivananthan, and R. Sporken: Interface properties and valence-band discontinuity of MnS/ZnSe heterostructures. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 2718 (1996).

    Article  CAS  Google Scholar 

  30. N. Zhang, R. Yi, Z. Wang, R. Shi, H. Wang, G. Qiu, and X. Liu: Hydrothermal synthesis and electrochemical properties of alpha-manganese sulfide submicrocrystals as an attractive electrode material for lithium-ion batteries. Mater. Chem. Phys. 111, 13 (2008).

    Article  CAS  Google Scholar 

  31. A.L. Geiger: Effects of internal oxidation and nitridation on the magnetic properties of non-oriented electrical steel. J. Appl. Phys. 50, 2366 (1979).

    Article  CAS  Google Scholar 

  32. C.R. Heiple, J.R. Roper, and R.T. Stagner: Surface active element effects on the shape of GTA, laser and electron beam welds. Weld. J. 62, 72 (1983).

    Google Scholar 

  33. T.D. Xu and B.Y. Cheng: Kinetics of non-equilibrium grain-boundary segregation. Prog. Mater. Sci. 49, 109 (2004).

    Article  CAS  Google Scholar 

  34. D. McLean: Grain Boundaries in Metals (Oxford Univ. Press, London, 1957).

    Google Scholar 

  35. K.T. Aust, J.S. Armijo, E.F. Koch, and J.H. Westbrook: Intergranular corrosion and electron microscopic studies of austenitic stainless steel. ASM Trans. Q. 60, 3 (1967).

    Google Scholar 

  36. T.R. Anthony: Solute segregation in vacancy gradients generated by sintering and temperature changes. Acta Metall. 17, 603 (1969).

    Article  CAS  Google Scholar 

  37. Z. Zhang, Q. Lin, and Z. Yu: Grain boundary segregation in ultra-low carbon steel. Mater. Sci. Eng., A 291, 22 (2000).

    Article  Google Scholar 

  38. R.G. Faulkner: Non-equilibrium grain-boundary segregation in austenitic alloys. J. Mater. Sci. 16, 373 (1981).

    Article  CAS  Google Scholar 

  39. T.D. Xu: The critical time and critical cooling rate of non-equilibrium grain-boundary segregations. J. Mater. Sci. Lett. 7, 241 (1988).

    Article  CAS  Google Scholar 

  40. T.D. Xu: Non-equilibrium grain-boundary segregation kinetics. J. Mater. Sci. 22, 337 (1987).

    Article  CAS  Google Scholar 

  41. W.F. Gale and T.C. Totemeier: Smithells Metals Reference Book, 8th ed. (Elsevier Butterworth-Heinemann Publishers, Burlington, 2003). (in America).

    Google Scholar 

  42. L.H. Van Vlack, O.K. Riegger, R.J. Warrick, and J.M. Dahl: Sulfide inclusions in steel. Trans. Metall. Soc. AIME 28, 220 (1961).

    Google Scholar 

  43. S.Q. Xiao, P.J. Wilbrandt, and P. Haasen: HREM observation of the nucleation of γ′-precipitates at dislocations in a Ni–12 at.% Al alloy. Scr. Metall. 23, 295 (1989).

    Article  CAS  Google Scholar 

  44. Y.U. Hao, Y.L. Kang, Z.Z. Zhao, and S. Hao: Morphology and precipitation kinetics of MnS in low-carbon steel during thin slab continuous casting process. J. Iron Steel Res. Int. 13, 30 (2006).

    Google Scholar 

  45. J.K. Mason: Grain boundary energy and curvature in Monte Carlo and cellular automata simulations of grain boundary motion. Acta Mater. 55, 2217 (2015).

    Google Scholar 

  46. D.J. Srolovitz, G.S. Grest, M.P. Anderson, and A.D. Rollet: Computer simulation of recrystallization—II. Heterogeneous nucleation and growth. Acta Metall. 94, 162 (2015).

    Google Scholar 

  47. A.M. Deus, M.A. Fortes, P.J. Ferreira, and J.B. Vander Sande: A general approach to grain growth driven by energy density differences. Acta Mater. 36, 2115 (1988).

    Article  Google Scholar 

  48. S. Shahandeh and M. Militzer: Grain boundary curvature and grain growth kinetics with particle pinning. Philos. Mag. 50, 3317 (2002).

    Google Scholar 

  49. G.K. Williamson and W.H. Hall: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 93, 3231 (2013).

    Google Scholar 

  50. G.K. Williamson and R.E. Smallman, III: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos. Mag. 1, 22 (1953).

    CAS  Google Scholar 

  51. A. Kisko, J. Talonen, D.A. Porter, and L.P. Karjalainen: Effect of Nb microalloying on reversion and grain growth in a high-Mn 204 Cu austenitic stainless steel. ISIJ Int. 1, 34 (1956).

    Google Scholar 

  52. C. Yang, H. Huang, G.J. Thorogood, L. Jiang, X. Ye, Z. Li, and X. Zhou: The effect of grain size and dislocation density on the tensile properties of Ni–SiCNP composites during annealing. J. Mater. Eng. Perform. 25, 726 (2016).

    Article  CAS  Google Scholar 

  53. P.A. Beck and P.R. Sperry: Strain induced grain boundary migration in high purity aluminum. J. Appl. Phys. 21, 150 (1950).

    Article  CAS  Google Scholar 

  54. F. Haessner, ed.: Recrystallization of Metallic Materials (Riederer Verlag, Stuttgart, 1971); p. 21.

    Google Scholar 

  55. T. Gladman: On the theory of the effect of precipitate particles on grain growth in metals. Proc. R. Soc. London 294, 298 (1966).

    CAS  Google Scholar 

  56. A.J. DeArdo, G.A. Ratz and P.J. Wray, eds.: Thermomechanical processing of microalloyed austenite. Proceedings of the international conference on the thermomechanical processing of microalloyed austenite (Metall. Soc. of AIME, Warrendale, PA, 1982).

    Google Scholar 

  57. M. Chapa, S.F. Medina, V. López, and B. Femández: Influence of Al and Nb on optimum Ti/N ratio in controlling austenite grain growth at reheating temperatures. ISIJ Int. 42, 1288 (2002).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (No. U1460103). We thank Dr. Han in the National High Magnetic Field Laboratory of USA for insights, Dr. Tyler for editing, and the Instrumental Analysis & Research Center in Shanghai University for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huigai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Li, H., Wu, Y. et al. Effect of precipitates on grain growth in non-oriented silicon steel. Journal of Materials Research 32, 2307–2314 (2017). https://doi.org/10.1557/jmr.2017.115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.115

Navigation