Abstract
A key issue in two-dimensional structures composed of atom-thick sheets of electronic materials is the dependence of the properties of the combined system on the features of its parts. Here, we introduce a simple framework for the study of the electronic structure of layered assemblies based on perturbation theory. Within this framework, we calculate the band structure of commensurate and twisted bilayers of graphene (Gr) and hexagonal boron nitride (h-BN), and of a Gr/h-BN heterostructure, which we compare with reference full-scale density functional theory calculations. This study presents a general methodology for computationally efficient calculations of two-dimensional materials and also demonstrates that for relatively large twist in the graphene bilayer, the perturbation of electronic states near the Fermi level is negligible.
Similar content being viewed by others
References
A.K. Geim and I.V. Grigorieva: van der Waals heterostructures. Nature 499(7459), 419–425 (2013).
L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y-J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H. Castro Neto, and K.S. Novoselov: Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311–1314 (2013).
M. Xu, T. Liang, M. Shi, and H. Chen: Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013).
J.H. Warner, M.H. Rümmeli, T. Gemming, B. Büchner, G. Andrew, and D. Briggs: Direct imaging of rotational stacking faults in few layer graphene. Nano Lett. 9(1), 102–106 (2009).
W. Yan, M. Liu, R-F. Dou, L. Meng, L. Feng, Z-D. Chu, Y. Zhang, Z. Liu, J-C. Nie, and L. He: Angle-dependent van Hove singularities in a slightly twisted graphene bilayer. Phys. Rev. Lett. 109, 126801 (2012).
L-J. Yin, J-B. Qiao, R. Xu, R-F. Dou, J-C. Nie, and L. He: Electronic structures and their Landau quantizations in twisted graphene bilayer and trilayer. arXiv e-print:1410.1621 (2014).
Y. Wang, Z. Su, W. Wu, S. Nie, X. Lu, H. Wang, K. McCarty, S-S. Pei, F. Robles-Hernandez, V.G. Hadjiev, and J. Bao: Four-fold Raman enhancement of 2D band in twisted bilayer graphene: Evidence for a doubly degenerate dirac band and quantum interference. Nanotechnology 25(33), 335201 (2014).
I. Brihuega, P. Mallet, H. González-Herrero, G. Trambly de Laissardière, M.M. Ugeda, L. Magaud, J.M. Gómez-Rodríguez, F. Ynduráin, and J-Y. Veuillen: Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 109, 196802 (2012).
S. Coh, L.Z. Tan, S.G. Louie, and M.L. Cohen: Theory of the Raman spectrum of rotated double-layer graphene. Phys. Rev. B 88(16), 165431 (2013).
M. Koshino: Interlayer interaction in general incommensurate atomic layers. New J. Phys. 17(1), 015014 (2015).
D. Ghader, D. Szczȩśniak, and A. Khater: Theory for the electronic structure of incommensurate twisted bilayer graphene. arXiv e-print:1501.06334 (2015).
H.K. Pal, S. Carter, and M. Kindermann: Theory of twisted bilayer graphene near commensuration. arXiv e-print:1409.1971 (2014).
B. Cao and T. Li: Interlayer electronic coupling in arbitrarily stacked MoS2 bilayers controlled by interlayer S–S interaction. J. Phys. Chem. C 119(2), 1247–1252 (2014).
M. Bokdam, T. Amlaki, G. Brocks, and P.J. Kelly: Band gaps in incommensurable graphene on hexagonal boron nitride. Phys. Rev. B 89(20), 201404 (2014).
P. Hohenberg and W. Kohn: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864–B871 (1964).
W. Kohn and L.J. Sham: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133–A1138 (1965).
R.M. Ribeiro and N.M.R. Peres: Stability of boron nitride bilayers: Ground-state energies, interlayer distances, and tight-binding description. Phys. Rev. B 83(23), 235312 (2011).
E. Cappelluti, R. Roldán, J.A. Silva-Guillén, P. Ordejón, and F. Guinea: Tight-binding model and direct-gap/indirect-gap transition in single-layer and multilayer MoS2. Phys. Rev. B 88(7), 075409 (2013).
S. Fang, R. Kuate Defo, S.N. Shirodkar, S. Lieu, G.A. Tritsaris, and E. Kaxiras: Ab initio tight-binding hamiltonian for transition metal dichalcogenides. Phys. Rev. B 92, 205108 (2015).
J. Enkovaara, C. Rostgaard, J.J. Mortensen, J. Chen, M. Dulak, L. Ferrighi, J. Gavnholt, C. Glinsvad, V. Haikola, H.A. Hansen, H.H. Kristoffersen, M. Kuisma, A.H. Larsen, L. Lehtovaara, M. Ljungberg, O. Lopez-Acevedo, P.G. Moses, J. Ojanen, T. Olsen, V. Petzold, N.A. Romero, J. Stausholm-Møller, M. Strange, G.A. Tritsaris, M. Vanin, M. Walter, B. Hammer, H. Häkkinen, G.K.H. Madsen, R.M. Nieminen, J.K. Nørskov, M. Puska, T.T. Rantala, J. Schiøtz, K.S. Thygesen, and K.W. Jacobsen: Electronic structure calculations with GPAW: A real-space implementation of the projector augmented-wave method. J. Phys.: Condens. Matter 22(25), 253202 (2010).
P.E. Blöchl: Projector augmented-wave method. Phys. Rev. B 50(24), 17953–17979 (1994).
G.A. Tritsaris, B.D. Malone, and E. Kaxiras: Optoelectronic properties of single-layer, double-layer, and bulk tin sulfide: A theoretical study. J. Appl. Phys. 113(23), 233507 (2013).
I.V. Lebedeva, A.A. Knizhnik, A.M. Popov, Y.E. Lozovik, and B.V. Potapkin: Interlayer interaction and relative vibrations of bilayer graphene. Phys. Chem. Chem. Phys. 13(13), 5687–5695 (2011).
X. Lin, Y. Xu, A.A. Hakro, T. Hasan, R. Hao, B. Zhang, and H. Chen: Ab initio optical study of graphene on hexagonal boron nitride and fluorographene substrates. J. Mater. Chem. C 1(8), 1618–1627 (2013).
Y. Fan, M. Zhao, Z. Wang, X. Zhang, and H. Zhang: Tunable electronic structures of graphene/boron nitride heterobilayers. Appl. Phys. Lett. 98(8), 083103 (2011).
G.A. Tritsaris, D. Vinichenko, G. Kolesov, C.M. Friend, and E. Kaxiras: Dynamics of the photogenerated hole at the rutile TiO2(110)/water interface: A nonadiabatic simulation study. J. Phys. Chem. C 118, 27393–27401 (2014).
G. Kolesov, D. Vinichenko, G.A. Tritsaris, C.M. Friend, and E. Kaxiras: Anatomy of the photochemical reaction: Excited-state dynamics reveals the C–H acidity mechanism of methoxy photo-oxidation on titania. J. Phys. Chem. Lett. 6(9), 1624–1627 (2015).
ACKNOWLEDGMENTS
This work was supported in part by ARO MURI Award W911NF-14-1-0247. Mitchell Luskin was also supported in part by the Radcliffe Institute for Advanced Study at Harvard University. Calculations were performed on the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation Grant No. ACI-1053575.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tritsaris, G.A., Shirodkar, S.N., Kaxiras, E. et al. Perturbation theory for weakly coupled two-dimensional layers. Journal of Materials Research 31, 959–966 (2016). https://doi.org/10.1557/jmr.2016.99
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2016.99