Skip to main content
Log in

Microstructure and dielectric properties with CuO additions to liquid phase sintered BaTiO3 thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The refractory nature of BaTiO3 leads to limited densification and grain growth for films processed at low temperatures and a modest nonlinear dielectric response due to a marked sensitivity to physical scale and material quality. Adding liquid-forming sintering aids, common in bulk ceramics, to thin films enhances mass transport, leading to enhanced grain growth at lower temperatures. This work explores the effectiveness of a sputtered CuO buffer layer with BaO–B2O3 (BBO) fluxes to engineer the microstructure of BaTiO3 films. Grain size and homogeneity increase in the presence of even a ∼1 nm CuO layer. In general, grain size increases from 75 to 370 nm with an addition of 2.2% BBO and 8 nm CuO. Room temperature capacitance in fluxed films increases by a factor of 5 over pure films, and ferroelectric phase transitions are clearly observable in dielectric measurements. CuO–BBO proves effective on (0001) Al2O3 and (100) MgO substrates, although all microstructures are notably finer for the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. S.M. Aygün, J.F. Ihlefeld, W.J. Borland, and J-P. Maria: Permittivity scaling in Ba1− xSrxTiO3 thin films and ceramics. J. Appl. Phys. 109, 034108 (2011).

    Article  CAS  Google Scholar 

  2. M.H. Frey, Z. Xu, P. Han, and D.A. Payne: The role of interfaces on an apparent grain size effect on the dielectric properties for ferroelectric barium titanate ceramics. Ferroelectrics 206, 337–353 (1998).

    Article  Google Scholar 

  3. T.M. Shaw, Z. Suo, M. Huang, E. Liniger, R.B. Laibowitz, and J.D. Baniecki: The effect of stress on the dielectric properties of barium strontium titanate thin films. Appl. Phys. Lett. 75, 2129 (1999).

    Article  CAS  Google Scholar 

  4. S.K. Streiffer, C. Basceri, C.B. Parker, S.E. Lash, and A.I. Kingon: Ferroelectricity in thin films: The dielectric response of fiber-textured (BaxSr1− x)Ti1+ yO3+ z thin films grown by chemical vapor deposition. J. Appl. Phys. 86, 4565 (1999).

    Article  CAS  Google Scholar 

  5. G. Arlt, D. Hennings, and G. de With: Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619 (1985).

    Article  CAS  Google Scholar 

  6. Z. Zhao, V. Buscaglia, M. Viviani, M. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, and P. Nanni: Grain-size effects on the ferroelectric behavior of dense nanocrystalline BaTiO3 ceramics. Phys. Rev. B: Condens. Matter Mater. Phys. 70, 024107 (2004).

    Article  CAS  Google Scholar 

  7. H. Kishi, Y. Mizuno, and H. Chazono: Base-metal electrode-multilayer ceramic capacitors: Past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1–15 (2003).

    Article  CAS  Google Scholar 

  8. D. Prakash, B.P. Sharma, T.R. Rama Mohan, and P. Gopalan: Flux additions in barium titanate: Overview and prospects. J. Solid State Chem. 155, 86–95 (2000).

    Article  CAS  Google Scholar 

  9. R. Takahashi, Y. Yonezawa, M. Ohtani, M. Kawasaki, K. Nakajima, T. Chikyow, H. Koinuma, and Y. Matsumoto: Perfect Bi4Ti3O12 single-crystal films via flux-mediated epitaxy. Adv. Funct. Mater. 16, 485–491 (2006).

    Article  CAS  Google Scholar 

  10. J.F. Ihlefeld, W.J. Borland, and J-P. Maria: Enhanced dielectric and crystalline properties in ferroelectric barium titanate thin films. Adv. Funct. Mater. 17, 1199–1203 (2007).

    Article  CAS  Google Scholar 

  11. D.T. Harris, M.J. Burch, J.F. Ihlefeld, P.G. Lam, J. Li, E.C. Dickey, and J-P. Maria: Realizing strain enhanced dielectric properties in BaTiO3 films by liquid phase assisted growth. Appl. Phys. Lett. 103, 012904 (2013).

    Article  CAS  Google Scholar 

  12. D.T. Harris, P.G. Lam, M.J. Burch, J. Li, B.J. Rogers, E.C. Dickey, and J-P. Maria: Ultra-high tunability in polycrystalline Ba1− xSrxTiO3 thin films. Appl. Phys. Lett. 105, 072904 (2014).

    Article  CAS  Google Scholar 

  13. I. Burn: Flux-sintered BaTiO3 dielectrics. J. Mater. Sci. 17, 1398–1408 (1982).

    Article  CAS  Google Scholar 

  14. D. Hennings and H. Schreinemacher: Method of producing a dielectric with perowskite structure and containing a copper oxide, United States Patent Office. U.S. Patent No. US4222885A, 1980.

  15. D. Hennings and H. Schreinemacher: Method of producing a dielectric with perowskite structure and containing a copper oxide, United States Patent Office. U.S. Patent No. US4244830A, 1981.

  16. T. Li, K. Yang, R. Xue, Y. Xue, and Z. Chen: The effect of CuO doping on the microstructures and dielectric properties of BaTiO3 ceramics. J. Mater. Sci.: Mater. Electron. 22, 838–842 (2010).

    Google Scholar 

  17. C-F. Yang: The influence of CuO–BaO mixture addition on the grain growth and dielectric characteristics of BaTiO3 ceramics. Ceram. Interfaces 24, 341–346 (1998).

    Article  CAS  Google Scholar 

  18. ASTM International: ASTM E112-13, Standard Test Methods for Determining Average Grain Size (ASTM International, West Conshohocken, PA, 2013).

    Google Scholar 

  19. W. Zhang, K. Osamura, and S. Ochiai: Phase diagram of the BaO–CuO binary system. J. Am. Ceram. Soc. 73, 1958–1964 (1990).

    Article  CAS  Google Scholar 

  20. E.M. Levin and H.F. McMurdie: The system BaO–B2O3. J. Am. Ceram. Soc. 32, 99–105 (1949).

    Article  CAS  Google Scholar 

  21. M.J. Burch, J. Li, D.T. Harris, J-P. Maria, and E.C. Dickey: Mechanisms for microstructure enhancement in flux-assisted growth of barium titanate on sapphire. J. Mater. Res. 29, 843–848 (2014).

    Article  CAS  Google Scholar 

  22. D.T. Harris, M.J. Burch, J. Li, E.C. Dickey, and J-P. Maria: Low-temperature control of twins and abnormal grain growth in BaTiO3. J. Am. Ceram. Soc. 98, 2381–2387 (2015).

    Article  CAS  Google Scholar 

  23. S. Derling, T. Müller, and H. Abicht: Copper oxide as a sintering agent for barium titanate based ceramics. J. Mater. Sci. 36, 1425–1431 (2001).

    Article  CAS  Google Scholar 

  24. J-B. Lim, S. Nahm, H-T. Kim, J-H. Kim, J-H. Paik, and H-J. Lee: Effect of B2O3 and CuO on the sintering temperature and microwave dielectric properties of the BaTi4O9 ceramics. J. Electroceram. 17, 393–397 (2006).

    Article  CAS  Google Scholar 

  25. M-H. Kim, Y-H. Jeong, S. Nahm, H-T. Kim, and H-J. Lee: Effect of B2O3 and CuO additives on the sintering temperature and microwave dielectric properties of Ba(Zn1/3Nb2/3)O3 ceramics. J. Eur. Ceram. Soc. 26, 2139–2142 (2006).

    Article  CAS  Google Scholar 

  26. A.M.M. Gadalla and J. White: Equilibrium relationships in the system CuO–Cu2O–Al2O3. Trans. Br. Ceram. Soc. 63, 57 (1964).

    Google Scholar 

  27. D. McCauley, R.E. Newnham, and C.A. Randall: Intrinsic size effects in a barium titanate glass-ceramic. J. Am. Ceram. Soc. 81, 979–987 (1998).

    Article  CAS  Google Scholar 

  28. J.F. Ihlefeld, P.R. Daniels, S.M. Aygün, W.J. Borland, and J-P. Maria: Property engineering in BaTiO3 films by stoichiometry control. J. Mater. Res. 25, 1064–1071 (2010).

    Article  CAS  Google Scholar 

  29. J.K. Lee, K.S. Hong, and J.W. Jang: Roles of Ba/Ti ratios in the dielectric properties of BaTiO3 ceramics. J. Am. Ceram. Soc. 84, 2001–2006 (2001).

    Article  CAS  Google Scholar 

  30. D.C. Lupascu, Y. Genenko, and N. Balke: Aging in ferroelectrics. J. Am. Ceram. Soc. 89, 224–229 (2006).

    Article  CAS  Google Scholar 

  31. Y.Q. Tan, J.L. Zhang, and C.L. Wang: Aging behaviours of CuO modified BaTiO3 ceramics. Adv. Appl. Ceram. 113, 223–227 (2014).

    Article  CAS  Google Scholar 

  32. H.T. Langhammer, T. Müller, R. Böttcher, and H-P. Abicht: Crystal structure and related properties of copper-doped barium titanate ceramics. Solid State Sci. 5, 965–971 (2003).

    Article  CAS  Google Scholar 

  33. U. Robels and G. Arlt: Domain wall clamping in ferroelectrics by orientation of defects. J. Appl. Phys. 73, 3454 (1993).

    Article  CAS  Google Scholar 

  34. A. Young, G. Hilmas, S.C. Zhang, and R.W. Schwartz: Effect of liquid-phase sintering on the breakdown strength of barium titanate. J. Am. Ceram. Soc. 90, 1504–1510 (2007).

    Article  CAS  Google Scholar 

  35. Z.H. Wu, H.X. Liu, M.H. Cao, Z.Y. Shen, Z.H. Yao, H. Hao, and D.B. Luo: Effect of BaO–Al2O3–B2O3–SiO2 glass additive on densification and dielectric properties of Ba0.3Sr0.7TiO3 ceramics. J. Ceram. Soc. Jpn. 116, 345–349 (2008).

    Article  CAS  Google Scholar 

  36. V. Krasevec, M. Drofenik, and D. Kolar: Genesis of the (111) twin in barium titanate. J. Am. Ceram. Soc. 73, 856–860 (1990).

    Article  CAS  Google Scholar 

  37. V. Krasevec, M. Drofenik, and D. Kolar: Topotaxy between BaTiO3 and Ba6Ti17O40. J. Am. Ceram. Soc. 70, C–193–C–195 (1987).

    Article  Google Scholar 

  38. B. Lee, S. Chung, and S-J.L. Kang: Grain boundary faceting and abnormal grain growth in BaTiO3. Acta Mater. 48, 1575–1580 (2000).

    Article  CAS  Google Scholar 

  39. B-K. Lee and S-J.L.L. Kang: Second-phase assisted formation of {111} twins in barium titanate. Acta Mater. 49, 1373–1381 (2001).

    Article  CAS  Google Scholar 

  40. B. Lee, S. Chung, and S.L. Kang: Necessary conditions for the formation of {111} twins in barium titanate. J. Am. Ceram. Soc. 83, 2858–2860 (2004).

    Article  Google Scholar 

  41. R.C. DeVRIES: Observations on growth of BaTiO3 crystals from KF solutions. J. Am. Ceram. Soc. 42, 547–558 (1959).

    Article  CAS  Google Scholar 

  42. O. Eibl, P. Pongratz, and P. Skalicky: Crystallography of (111) twins in BaTiO3. Philos. Mag. Part B 57, 521–534 (1988).

    Article  CAS  Google Scholar 

  43. O. Eibl, P. Pongratz, P. Skalicky, and H. Schmelz: Formation of (111) twins in BaTiO3 ceramics. J. Am. Ceram. Soc. 70, C–195–C–197 (1987).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This material is based upon work supported by the NSF Center for Dielectrics and Piezoelectrics (NSF 1361503), the National Science Foundation Graduate Research Fellowship (NSF DGE-0946818), and the Army Research Office contract (W911NF1410285). Any opinion, findings, and conclusions or recommendations expressed in this material are those of the authors(s) and do not necessarily reflect the views of the National Science Foundation. The authors acknowledge the use of the Analytical Instrumentation Facility (AIF) at North Carolina State University, which is supported by the State of North Carolina and the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Harris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, D.T., Burch, M.J., Mily, E.J. et al. Microstructure and dielectric properties with CuO additions to liquid phase sintered BaTiO3 thin films. Journal of Materials Research 31, 1018–1026 (2016). https://doi.org/10.1557/jmr.2016.89

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.89

Navigation