Abstract
This paper, for the first time, reports the results of microwave sintering of two emerging biomaterials, magnesium phosphate and amorphous magnesium calcium phosphate. Beneficial aspects of successful microwave sintering of calcium phosphate are well documented in the literature. The motivation for this work derives from the absence of any publication of similar nature on magnesium phosphates, which are becoming important with the rapid rise in interest in biodegradable Mg-alloys. Starting off with amorphous calcium magnesium phosphate and magnesium phosphate, the resulting microwave sintered product is a biphasic mixture of whitlockite substituted with magnesium and magnesium phosphate. The influence of the extent of Mg substitution on the mechanical properties, microstructure, and sintering behavior of tricalcium phosphate was evaluated. The results showed that the addition of Mg (up to the 50% wt/wt in relation to Ca mass) in the precursor compound of magnesium calcium phosphate improved the kinetics of the densification process and enhanced hardness values.
Similar content being viewed by others
References
C. Tardei, F. Grigore, I. Pasuk, and S. Stoleriu: The study of Mg2+/Ca2+ substitution of-tricalcium phosphate. J. Optoelectron. Adv. Mater. 8 (2), 568 (2006).
S.V. Dorozhkin: Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 6 (3), 715 (2010).
D. Veljović, I. Zalite, E. Palcevskis, I. Smiciklas, R. Petrović, and Dj. Janaćković: Microwave sintering of fine grained HA and HA/TCP bioceramics. Ceram. Int. 36 (2), 595 (2010).
K. Tõnsuaadu, K.A. Gross, L. Plūduma, and M. Veiderma: A review on the thermal stability of calcium apatites. J. Therm. Anal. Calorim. 110 (2), 647 (2011).
E. Champion: Sintering of calcium phosphate bioceramics. Acta Biomater. 9 (4), 5855 (2013).
S. Ramesh, C.Y. Tan, S.B. Bhaduri, and W.D. Teng: Rapid densification of nanocrystalline hydroxyapatite for biomedical applications. Ceram. Int. 33 (7), 1363 (2007).
D.K. Agrawal, Y. Fang, D.M. Roy, and R. Roy: Fabrication of hydroxyapatite ceramics by microwave processing. MRS Proc. 269, 231 (1992).
P. Layrolle, A. Ito, and T. Tateishi: Sol–gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics. J. Am. Ceram. Soc. 81 (6), 1421 (1998).
S. Mousa: Study on synthesis of magnesium phosphate materials. Phosphorus Res. Bull. 24, 16 (2010).
S. Ramesh, C.Y. Tan, S.B. Bhaduri, W.D. Teng, and I. Sopyan: Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J. Mater. Process. Technol. 206 (1), 221 (2008).
M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27 (9), 1728 (2006).
B.C. Sales, B.C. Chakoumakos, L.A. Boatner, and J.O. Ramey: Structural properties of the amorphous phases produced by heating crystalline MgHPO4·3H2O. J. Non-Cryst. Solids 159 (1), 121 (1993).
E. Vorndran, A. Ewald, F.A. Müller, K. Zorn, A. Kufner, and U. Gbureck: Formation and properties of magnesium–ammonium–phosphate hexahydrate biocements in the Ca–Mg–PO4 system. J. Mater. Sci.: Mater. Med. 22 (3), 429 (2011).
A. Hanifi, M.H. Fathi, H.M. Sadeghi, and J. Varshosaz: Mg2+ substituted calcium phosphate nano particles synthesis for non viral gene delivery application. J. Mater. Sci.: Mater. Med. 21 (8), 2393 (2010).
I. Cacciotti and A. Bianco: High thermally stable Mg-substituted tricalcium phosphate via precipitation. Ceram. Int. 37 (1), 127 (2011).
S. Kannan, A.F. Lemos, J.H.G. Rocha, and J.M.F. Ferreira: Characterization and mechanical performance of the Mg-stabilized β-Ca3(PO4)2 prepared from Mg-substituted Ca-deficient apatite. J. Am. Ceram. Soc. 89 (9), 2757 (2006).
R. Enderle, F. Götz-Neunhoeffer, M. Göbbels, F.A. Müller, and P. Greil: Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement. Biomaterials 26 (17), 3379 (2005).
E. Babaie, H. Zhou, B. Lin, and S.B. Bhaduri: Influence of ethanol content in the precipitation medium on the composition, structure and reactivity of magnesium–calcium phosphate. Mater. Sci. Eng., C 53, 204 (2015).
X. Zhang, F. Jiang, T. Groth, and K.S. Vecchio: Preparation, characterization and mechanical performance of dense β-TCP ceramics with/without magnesium substitution. J. Mater. Sci.: Mater. Med. 19 (9), 3063 (2008).
J. Marchi, A.C.S. Dantas, P. Greil, J.C. Bressiani, A.H.A. Bressiani, and F.A. Müller: Influence of Mg-substitution on the physicochemical properties of calcium phosphate powders. Mater. Res. Bull. 42 (6), 1040 (2007).
H-S. Ryu, K.S. Hong, J-K. Lee, D.J. Kim, J.H. Lee, B-S. Chang, D-h. Lee, C-K. Lee, and S-S. Chung: Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility. Biomaterials 25 (3), 393 (2004).
S.J. Kalita and H.A. Bhatt: Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization. Mater. Sci. Eng., C 27 (4), 837 (2007).
D.E. Wagner, A.D. Jones, H. Zhou, and S.B. Bhaduri: Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control. Mater. Sci. Eng., C 33 (3), 1710 (2013).
K. Niihara: Indentation microfracture of ceramics—Its application and problems. Ceram. Jpn. 20 (1), 12 (1985).
F. Ren, Y. Leng, R. Xin, and X. Ge: Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 6 (7), 2787 (2010).
I. Cacciotti, A. Bianco, M. Lombardi, and L. Montanaro: Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behaviour. J. Eur. Ceram. Soc. 29 (14), 2969 (2009).
A. Rodrigues and A. Lebugle: Influence of ethanol in the precipitation medium on the composition, structure and reactivity of tricalcium phosphate. Colloids Surf., A 145 (1), 191 (1998).
S. Hesaraki, M. Safari, and M.A. Shokrgozar: Composite bone substitute materials based on β-tricalcium phosphate and magnesium-containing sol–gel derived bioactive glass. J. Mater. Sci.: Mater. Med. 20 (10), 2011 (2009).
C.Y. Tan, A. Yaghoubi, S. Ramesh, S. Adzila, J. Purbolaksono, M.A. Hassan, and M.G. Kutty: Sintering and mechanical properties of MgO-doped nanocrystalline hydroxyapatite. Ceram. Int. 39 (8), 8979 (2013).
S.J. Kalita, A. Bhardwaj, and H.A. Bhatt: Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater. Sci. Eng., C 27 (3), 441 (2007).
S. Laasri, M. Taha, A. Laghzizil, E.K. Hlil, and J. Chevalier: The affect of densification and dehydroxylation on the mechanical properties of stoichiometric hydroxyapatite bioceramics. Mater. Res. Bull. 45 (10), 1433 (2010).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Babaie, E., Ren, Y. & Bhaduri, S.B. Microwave sintering of fine grained MgP and Mg substitutes with amorphous tricalcium phosphate: Structural, and mechanical characterization. Journal of Materials Research 31, 995–1003 (2016). https://doi.org/10.1557/jmr.2016.84
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2016.84