Skip to main content
Log in

Microwave sintering of fine grained MgP and Mg substitutes with amorphous tricalcium phosphate: Structural, and mechanical characterization

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper, for the first time, reports the results of microwave sintering of two emerging biomaterials, magnesium phosphate and amorphous magnesium calcium phosphate. Beneficial aspects of successful microwave sintering of calcium phosphate are well documented in the literature. The motivation for this work derives from the absence of any publication of similar nature on magnesium phosphates, which are becoming important with the rapid rise in interest in biodegradable Mg-alloys. Starting off with amorphous calcium magnesium phosphate and magnesium phosphate, the resulting microwave sintered product is a biphasic mixture of whitlockite substituted with magnesium and magnesium phosphate. The influence of the extent of Mg substitution on the mechanical properties, microstructure, and sintering behavior of tricalcium phosphate was evaluated. The results showed that the addition of Mg (up to the 50% wt/wt in relation to Ca mass) in the precursor compound of magnesium calcium phosphate improved the kinetics of the densification process and enhanced hardness values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. C. Tardei, F. Grigore, I. Pasuk, and S. Stoleriu: The study of Mg2+/Ca2+ substitution of-tricalcium phosphate. J. Optoelectron. Adv. Mater. 8 (2), 568 (2006).

    CAS  Google Scholar 

  2. S.V. Dorozhkin: Nanosized and nanocrystalline calcium orthophosphates. Acta Biomater. 6 (3), 715 (2010).

    Article  CAS  Google Scholar 

  3. D. Veljović, I. Zalite, E. Palcevskis, I. Smiciklas, R. Petrović, and Dj. Janaćković: Microwave sintering of fine grained HA and HA/TCP bioceramics. Ceram. Int. 36 (2), 595 (2010).

    Article  Google Scholar 

  4. K. Tõnsuaadu, K.A. Gross, L. Plūduma, and M. Veiderma: A review on the thermal stability of calcium apatites. J. Therm. Anal. Calorim. 110 (2), 647 (2011).

    Article  Google Scholar 

  5. E. Champion: Sintering of calcium phosphate bioceramics. Acta Biomater. 9 (4), 5855 (2013).

    Article  CAS  Google Scholar 

  6. S. Ramesh, C.Y. Tan, S.B. Bhaduri, and W.D. Teng: Rapid densification of nanocrystalline hydroxyapatite for biomedical applications. Ceram. Int. 33 (7), 1363 (2007).

    Article  CAS  Google Scholar 

  7. D.K. Agrawal, Y. Fang, D.M. Roy, and R. Roy: Fabrication of hydroxyapatite ceramics by microwave processing. MRS Proc. 269, 231 (1992).

    Article  CAS  Google Scholar 

  8. P. Layrolle, A. Ito, and T. Tateishi: Sol–gel synthesis of amorphous calcium phosphate and sintering into microporous hydroxyapatite bioceramics. J. Am. Ceram. Soc. 81 (6), 1421 (1998).

    Article  CAS  Google Scholar 

  9. S. Mousa: Study on synthesis of magnesium phosphate materials. Phosphorus Res. Bull. 24, 16 (2010).

    Article  CAS  Google Scholar 

  10. S. Ramesh, C.Y. Tan, S.B. Bhaduri, W.D. Teng, and I. Sopyan: Densification behaviour of nanocrystalline hydroxyapatite bioceramics. J. Mater. Process. Technol. 206 (1), 221 (2008).

    Article  CAS  Google Scholar 

  11. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27 (9), 1728 (2006).

    Article  CAS  Google Scholar 

  12. B.C. Sales, B.C. Chakoumakos, L.A. Boatner, and J.O. Ramey: Structural properties of the amorphous phases produced by heating crystalline MgHPO4·3H2O. J. Non-Cryst. Solids 159 (1), 121 (1993).

    Article  CAS  Google Scholar 

  13. E. Vorndran, A. Ewald, F.A. Müller, K. Zorn, A. Kufner, and U. Gbureck: Formation and properties of magnesium–ammonium–phosphate hexahydrate biocements in the Ca–Mg–PO4 system. J. Mater. Sci.: Mater. Med. 22 (3), 429 (2011).

    CAS  Google Scholar 

  14. A. Hanifi, M.H. Fathi, H.M. Sadeghi, and J. Varshosaz: Mg2+ substituted calcium phosphate nano particles synthesis for non viral gene delivery application. J. Mater. Sci.: Mater. Med. 21 (8), 2393 (2010).

    CAS  Google Scholar 

  15. I. Cacciotti and A. Bianco: High thermally stable Mg-substituted tricalcium phosphate via precipitation. Ceram. Int. 37 (1), 127 (2011).

    Article  CAS  Google Scholar 

  16. S. Kannan, A.F. Lemos, J.H.G. Rocha, and J.M.F. Ferreira: Characterization and mechanical performance of the Mg-stabilized β-Ca3(PO4)2 prepared from Mg-substituted Ca-deficient apatite. J. Am. Ceram. Soc. 89 (9), 2757 (2006).

    CAS  Google Scholar 

  17. R. Enderle, F. Götz-Neunhoeffer, M. Göbbels, F.A. Müller, and P. Greil: Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement. Biomaterials 26 (17), 3379 (2005).

    Article  CAS  Google Scholar 

  18. E. Babaie, H. Zhou, B. Lin, and S.B. Bhaduri: Influence of ethanol content in the precipitation medium on the composition, structure and reactivity of magnesium–calcium phosphate. Mater. Sci. Eng., C 53, 204 (2015).

    Article  CAS  Google Scholar 

  19. X. Zhang, F. Jiang, T. Groth, and K.S. Vecchio: Preparation, characterization and mechanical performance of dense β-TCP ceramics with/without magnesium substitution. J. Mater. Sci.: Mater. Med. 19 (9), 3063 (2008).

    CAS  Google Scholar 

  20. J. Marchi, A.C.S. Dantas, P. Greil, J.C. Bressiani, A.H.A. Bressiani, and F.A. Müller: Influence of Mg-substitution on the physicochemical properties of calcium phosphate powders. Mater. Res. Bull. 42 (6), 1040 (2007).

    Article  CAS  Google Scholar 

  21. H-S. Ryu, K.S. Hong, J-K. Lee, D.J. Kim, J.H. Lee, B-S. Chang, D-h. Lee, C-K. Lee, and S-S. Chung: Magnesia-doped HA/β-TCP ceramics and evaluation of their biocompatibility. Biomaterials 25 (3), 393 (2004).

    Article  CAS  Google Scholar 

  22. S.J. Kalita and H.A. Bhatt: Nanocrystalline hydroxyapatite doped with magnesium and zinc: Synthesis and characterization. Mater. Sci. Eng., C 27 (4), 837 (2007).

    Article  CAS  Google Scholar 

  23. D.E. Wagner, A.D. Jones, H. Zhou, and S.B. Bhaduri: Cytocompatibility evaluation of microwave sintered biphasic calcium phosphate scaffolds synthesized using pH control. Mater. Sci. Eng., C 33 (3), 1710 (2013).

    Article  CAS  Google Scholar 

  24. K. Niihara: Indentation microfracture of ceramics—Its application and problems. Ceram. Jpn. 20 (1), 12 (1985).

    Google Scholar 

  25. F. Ren, Y. Leng, R. Xin, and X. Ge: Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite. Acta Biomater. 6 (7), 2787 (2010).

    Article  CAS  Google Scholar 

  26. I. Cacciotti, A. Bianco, M. Lombardi, and L. Montanaro: Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behaviour. J. Eur. Ceram. Soc. 29 (14), 2969 (2009).

    Article  CAS  Google Scholar 

  27. A. Rodrigues and A. Lebugle: Influence of ethanol in the precipitation medium on the composition, structure and reactivity of tricalcium phosphate. Colloids Surf., A 145 (1), 191 (1998).

    Article  CAS  Google Scholar 

  28. S. Hesaraki, M. Safari, and M.A. Shokrgozar: Composite bone substitute materials based on β-tricalcium phosphate and magnesium-containing sol–gel derived bioactive glass. J. Mater. Sci.: Mater. Med. 20 (10), 2011 (2009).

    CAS  Google Scholar 

  29. C.Y. Tan, A. Yaghoubi, S. Ramesh, S. Adzila, J. Purbolaksono, M.A. Hassan, and M.G. Kutty: Sintering and mechanical properties of MgO-doped nanocrystalline hydroxyapatite. Ceram. Int. 39 (8), 8979 (2013).

    Article  CAS  Google Scholar 

  30. S.J. Kalita, A. Bhardwaj, and H.A. Bhatt: Nanocrystalline calcium phosphate ceramics in biomedical engineering. Mater. Sci. Eng., C 27 (3), 441 (2007).

    Article  CAS  Google Scholar 

  31. S. Laasri, M. Taha, A. Laghzizil, E.K. Hlil, and J. Chevalier: The affect of densification and dehydroxylation on the mechanical properties of stoichiometric hydroxyapatite bioceramics. Mater. Res. Bull. 45 (10), 1433 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Babaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babaie, E., Ren, Y. & Bhaduri, S.B. Microwave sintering of fine grained MgP and Mg substitutes with amorphous tricalcium phosphate: Structural, and mechanical characterization. Journal of Materials Research 31, 995–1003 (2016). https://doi.org/10.1557/jmr.2016.84

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.84

Navigation