Abstract
Graphene-covered copper surfaces have been exposed to borazine, (BH)3(NH)3, with the resulting surfaces characterized by low-energy electron microscopy. Although the intent of the experiment was to form hexagonal boron nitride (h-BN) on top of the graphene, such layers were not obtained. Rather, in isolated surface areas, h-BN is found to form µm-size islands that substitute for the graphene. Additionally, over nearly the entire surface, the properties of the layer that was originally graphene is observed to change in a manner that is consistent with the formation of a mixed h-BN/graphene alloy, i.e., h-BNC alloy. Furthermore, following the deposition of the borazine, a small fraction of the surface is found to consist of bare copper, indicating etching of the overlying graphene. The inability to form h-BN layers on top of graphene is discussed in terms of the catalytic behavior of the underlying copper surface and the decomposition of the borazine on top of the graphene.
Similar content being viewed by others
References
X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009).
K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Hofmann, D. Nezich, J.F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong: Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12, 161 (2012).
L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, and P.M. Ajayan: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430 (2010).
X. Li, W. Cai, L. Colombo, and R.S. Ruoff: Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268 (2009).
G. Lu, T. Wu, Q. Yuan, H. Wang, H. Wang, F. Ding, X. Xie, and M. Jiang: Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy. Nat. Commun. 6, 6160 (2015).
A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima: Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. Phys. Rev. B: Condens. Matter Mater. Phys. 51, 4606 (1995).
W. Auwärter, M. Muntwiler, J. Osterwalder, and T. Greber: Defect lines and two-domain structure of hexagonal boron nitride films on Ni(111). Surf. Sci. 545, L735 (2003).
W. Auwärter, H.U. Suter, H. Sachdev, and T. Greber: Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from B-Trichlorobrazine (ClBNH)3. Chem. Mater. 16, 343 (2004).
A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2009).
J. Kang, S. Hwang, J.H. Kim, M.H. Kim, J. Ryu, S.J. Seo, B.H. Hong, M.K. Kim, and J.B. Choi: Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. ACS Nano 6, 5360 (2012).
X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, and R.S. Ruoff: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359 (2009).
Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, and A.T.C. Johnson: Intrinsic response of graphene vapor sensors. Nano Lett. 9, 1472 (2009).
S. Roth, F. Matsui, T. Greber, and J. Osterwalder: Chemical vapor deposition and characterization of aligned and incommensurate graphene/hexagonal boron nitride heterostack on Cu(111). Nano Lett. 13, 2668 (2013).
Y. Shi, W. Zhou, A-Y. Lou, W. Fang, Y-H. Lee, A.L. Hsu, S.M. Kim, K.K. Kim, H.Y. Yang, L-J. Li, J-C. Idrobo, and J. Kong: van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784 (2012).
W. Yang, G. Chen, Z. Shi, C-C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, D. Shi, K. Watanabe, T. Taniguchi, Y. Yao, Y. Zhang, and G. Zhang: Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792 (2013).
C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, and J. Hone: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722 (2010).
Z. Liu, L. Song, S. Zhao, J. Huang, L. Ma, J. Zhang, J. Lou, and P.M. Ajayan: Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11, 2032 (2011).
R.M. Feenstra, D. Jena, and G. Gu: Single-particle tunneling in doped graphene-insulator-graphene junctions. J. Appl. Phys. 111, 043711 (2012).
P. Zhao, R.M. Feenstra, G. Gu, and D. Jena: SymFET: A Proposed Symmetric Graphene Tunneling Field-Effect Transistor. IEEE Trans. Electron Devices 60, 951 (2013).
L. Britnell, R.V. Gorbachev, A.K. Geim, L.A. Ponomarenko, A. Mishchenko, M.T. Greenaway, T.M. Fromhold, K.S. Novoselov, and L. Eaves: Resonant tunneling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013).
A. Mishchenko, J.S. Tu, Y. Cao, R.V. Gorbachev, J.R. Wallbank, M.T. Greenaway, V.E. Morozov, S.V. Morozov, M.J. Zhu, S.L. Wong, F. Withers, C.R. Woods, Y-J. Kim, K. Watanabe, T. Taniguchi, E.E. Vdovin, O. Makarovsky, T.M. Fromhold, V.I. Fal’ko, A.K. Geim, L. Eaves, and K.S. Novoselov: Twist-controlled resonant tunneling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808 (2014).
P.C. Mende, J. Li, Q. Gao, M. Widom, and R.M. Feenstra: To be published.
E. Bauer: Low energy electron microscopy. Rep. Prog. Phys. 57, 895 (1994).
J.B. Hannon and R.M. Tromp: Low-energy electron microscopy for nanoscale characterization. In Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization, R. Haight, F.M. Ross and J.B. Hannon eds.; World Scientific: Singapore, 2012.
R.M. Feenstra, N. Srivastava, Q. Gao, M. Widom, B. Diaconescu, T. Ohta, G.L. Kellogg, J.T. Robinson, and I.V. Vlassiouk: Low-energy electron reflectivity from graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 87, 041406(R) (2013).
N. Srivastava, Q. Gao, M. Widom, R.M. Feenstra, S. Nie, K.F. McCarty, and I.V. Vlassiouk: Low-energy electron reflectivity of graphene on copper and other substrates. Phys. Rev. B: Condens. Matter Mater. Phys. 87, 245414 (2013).
Q. Gao, P.C. Mende, M. Widom, and R.M. Feenstra: Inelastic effects in low-energy electron reflectivity of two-dimensional materials. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33, 02B105 (2015).
P.C. Mende, Q. Gao, A. Ismach, H. Chou, L. Colombo, R.S. Ruoff, and R.M. Feenstra: To be published.
P.C. Mende, Q. Gao, A. Moshin, L. Liu, G. Gu, and R.M. Feenstra: To be published.
H. Hibino, H. Kageshima, F. Maeda, M. Nagase, Y. Kobayashi, and H. Yamaguchi: Microscopic thickness dtermination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Phys. Rev. B: Condens. Matter Mater. Phys. 77, 075413 (2008).
Y. Qi, S.H. Rhim, G.F. Sun, M. Weinert, and L. Li: Epitaxial graphene on SiC(0001): More than just Honeycombs. Phys. Rev. Lett. 105, 085502 (2010).
S. Dhingra, J-F. Hsu, I. Vlassiouk, and B. D’Urso: Chemical vapor deposition of graphene on large-domain ultra-flat copper. Carbon 69, 188 (2014).
I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov: Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5, 6069 (2011).
W. Święch, B. Rausenberger, W. Engel, A.M. Bradshaw, and E. Zeitler: In-situ studies of heterogeneous reactions using mirror electron microscopy. Surf. Sci. 294, 297 (1993).
L. Reimer: Transmission Electron Microscopy, Springer Series in Optical Sciences, 4th ed., Vol. 36 (Springer, Berlin, 1997).
S. Nie, W. Wu, S. Xing, Q. Yu, J. Bao, S-S. Pei, and K.F. McCarty: Growth from below: Bilayer graphene on copper by chemical vapor deposition. New J. Phys. 14, 093028 (2012).
J.C. Koepke, J.W. Wood, D. Estrada, Z-Y. Ong, K.T. He, E. Pop, and J.W. Lyding: Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: A scanning tunneling microscopy study. ACS Nano 7, 75 (2013).
L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Riach, and R.E. Weber: Handbook of Auger Electron Spectroscopy, 2nd ed. (Perkin-Elmer Corporation, Eden Prairie, MN, 1978); p. 13.
P.R. Kidambi, R. Blume, J. Kling, J.B. Wagner, C. Baehtz, R.S. Weatherup, R. Schloegl, B.C. Bayer, and S. Hoffmann: In-situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper. Chem. Mater. 26, 6380 (2014).
Y. Zhang, Z. Li, P. Kim, L. Zhang, and C. Zhou: Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano 6, 126 (2012).
L. Zhang, Y. Ye, D. Cheng, H. Pan, and J. Zhu: Intercalation of Li at the graphene/Cu interface. J. Phys. Chem. 117, 9259 (2013).
ACKNOWLEDGMENTS
This work was supported in part by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Gopalan, D.P., Mende, P.C., de la Barrera, S.C. et al. Formation of hexagonal boron nitride on graphene-covered copper surfaces. Journal of Materials Research 31, 945–958 (2016). https://doi.org/10.1557/jmr.2016.82
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2016.82