Skip to main content

Advertisement

Log in

Formation of hexagonal boron nitride on graphene-covered copper surfaces

  • Invited Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Graphene-covered copper surfaces have been exposed to borazine, (BH)3(NH)3, with the resulting surfaces characterized by low-energy electron microscopy. Although the intent of the experiment was to form hexagonal boron nitride (h-BN) on top of the graphene, such layers were not obtained. Rather, in isolated surface areas, h-BN is found to form µm-size islands that substitute for the graphene. Additionally, over nearly the entire surface, the properties of the layer that was originally graphene is observed to change in a manner that is consistent with the formation of a mixed h-BN/graphene alloy, i.e., h-BNC alloy. Furthermore, following the deposition of the borazine, a small fraction of the surface is found to consist of bare copper, indicating etching of the overlying graphene. The inability to form h-BN layers on top of graphene is discussed in terms of the catalytic behavior of the underlying copper surface and the decomposition of the borazine on top of the graphene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff: Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312 (2009).

    Article  CAS  Google Scholar 

  2. K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Hofmann, D. Nezich, J.F. Rodriguez-Nieva, M. Dresselhaus, T. Palacios, and J. Kong: Synthesis of monolayer hexagonal boron nitride on Cu foil using chemical vapor deposition. Nano Lett. 12, 161 (2012).

    Article  Google Scholar 

  3. L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z.F. Wang, K. Storr, L. Balicas, F. Liu, and P.M. Ajayan: Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430 (2010).

    Article  CAS  Google Scholar 

  4. X. Li, W. Cai, L. Colombo, and R.S. Ruoff: Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9, 4268 (2009).

    Article  CAS  Google Scholar 

  5. G. Lu, T. Wu, Q. Yuan, H. Wang, H. Wang, F. Ding, X. Xie, and M. Jiang: Synthesis of large single-crystal hexagonal boron nitride grains on Cu-Ni alloy. Nat. Commun. 6, 6160 (2015).

    Article  CAS  Google Scholar 

  6. A. Nagashima, N. Tejima, Y. Gamou, T. Kawai, and C. Oshima: Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. Phys. Rev. B: Condens. Matter Mater. Phys. 51, 4606 (1995).

    Article  CAS  Google Scholar 

  7. W. Auwärter, M. Muntwiler, J. Osterwalder, and T. Greber: Defect lines and two-domain structure of hexagonal boron nitride films on Ni(111). Surf. Sci. 545, L735 (2003).

    Article  Google Scholar 

  8. W. Auwärter, H.U. Suter, H. Sachdev, and T. Greber: Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from B-Trichlorobrazine (ClBNH)3. Chem. Mater. 16, 343 (2004).

    Article  Google Scholar 

  9. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong: Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30 (2009).

    Article  CAS  Google Scholar 

  10. J. Kang, S. Hwang, J.H. Kim, M.H. Kim, J. Ryu, S.J. Seo, B.H. Hong, M.K. Kim, and J.B. Choi: Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. ACS Nano 6, 5360 (2012).

    Article  CAS  Google Scholar 

  11. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, and R.S. Ruoff: Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359 (2009).

    Article  CAS  Google Scholar 

  12. Y. Dan, Y. Lu, N.J. Kybert, Z. Luo, and A.T.C. Johnson: Intrinsic response of graphene vapor sensors. Nano Lett. 9, 1472 (2009).

    Article  CAS  Google Scholar 

  13. S. Roth, F. Matsui, T. Greber, and J. Osterwalder: Chemical vapor deposition and characterization of aligned and incommensurate graphene/hexagonal boron nitride heterostack on Cu(111). Nano Lett. 13, 2668 (2013).

    Article  CAS  Google Scholar 

  14. Y. Shi, W. Zhou, A-Y. Lou, W. Fang, Y-H. Lee, A.L. Hsu, S.M. Kim, K.K. Kim, H.Y. Yang, L-J. Li, J-C. Idrobo, and J. Kong: van der Waals epitaxy of MoS2 layers using graphene as growth templates. Nano Lett. 12, 2784 (2012).

    Article  CAS  Google Scholar 

  15. W. Yang, G. Chen, Z. Shi, C-C. Liu, L. Zhang, G. Xie, M. Cheng, D. Wang, R. Yang, D. Shi, K. Watanabe, T. Taniguchi, Y. Yao, Y. Zhang, and G. Zhang: Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792 (2013).

    Article  CAS  Google Scholar 

  16. C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, and J. Hone: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722 (2010).

    Article  CAS  Google Scholar 

  17. Z. Liu, L. Song, S. Zhao, J. Huang, L. Ma, J. Zhang, J. Lou, and P.M. Ajayan: Direct growth of graphene/hexagonal boron nitride stacked layers. Nano Lett. 11, 2032 (2011).

    Article  CAS  Google Scholar 

  18. R.M. Feenstra, D. Jena, and G. Gu: Single-particle tunneling in doped graphene-insulator-graphene junctions. J. Appl. Phys. 111, 043711 (2012).

    Article  Google Scholar 

  19. P. Zhao, R.M. Feenstra, G. Gu, and D. Jena: SymFET: A Proposed Symmetric Graphene Tunneling Field-Effect Transistor. IEEE Trans. Electron Devices 60, 951 (2013).

    Article  Google Scholar 

  20. L. Britnell, R.V. Gorbachev, A.K. Geim, L.A. Ponomarenko, A. Mishchenko, M.T. Greenaway, T.M. Fromhold, K.S. Novoselov, and L. Eaves: Resonant tunneling and negative differential conductance in graphene transistors. Nat. Commun. 4, 1794 (2013).

    Article  CAS  Google Scholar 

  21. A. Mishchenko, J.S. Tu, Y. Cao, R.V. Gorbachev, J.R. Wallbank, M.T. Greenaway, V.E. Morozov, S.V. Morozov, M.J. Zhu, S.L. Wong, F. Withers, C.R. Woods, Y-J. Kim, K. Watanabe, T. Taniguchi, E.E. Vdovin, O. Makarovsky, T.M. Fromhold, V.I. Fal’ko, A.K. Geim, L. Eaves, and K.S. Novoselov: Twist-controlled resonant tunneling in graphene/boron nitride/graphene heterostructures. Nat. Nanotechnol. 9, 808 (2014).

    Article  CAS  Google Scholar 

  22. P.C. Mende, J. Li, Q. Gao, M. Widom, and R.M. Feenstra: To be published.

  23. E. Bauer: Low energy electron microscopy. Rep. Prog. Phys. 57, 895 (1994).

    Article  CAS  Google Scholar 

  24. J.B. Hannon and R.M. Tromp: Low-energy electron microscopy for nanoscale characterization. In Handbook of Instrumentation and Techniques for Semiconductor Nanostructure Characterization, R. Haight, F.M. Ross and J.B. Hannon eds.; World Scientific: Singapore, 2012.

    Google Scholar 

  25. R.M. Feenstra, N. Srivastava, Q. Gao, M. Widom, B. Diaconescu, T. Ohta, G.L. Kellogg, J.T. Robinson, and I.V. Vlassiouk: Low-energy electron reflectivity from graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 87, 041406(R) (2013).

    Article  Google Scholar 

  26. N. Srivastava, Q. Gao, M. Widom, R.M. Feenstra, S. Nie, K.F. McCarty, and I.V. Vlassiouk: Low-energy electron reflectivity of graphene on copper and other substrates. Phys. Rev. B: Condens. Matter Mater. Phys. 87, 245414 (2013).

    Article  Google Scholar 

  27. Q. Gao, P.C. Mende, M. Widom, and R.M. Feenstra: Inelastic effects in low-energy electron reflectivity of two-dimensional materials. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 33, 02B105 (2015).

    Google Scholar 

  28. P.C. Mende, Q. Gao, A. Ismach, H. Chou, L. Colombo, R.S. Ruoff, and R.M. Feenstra: To be published.

  29. P.C. Mende, Q. Gao, A. Moshin, L. Liu, G. Gu, and R.M. Feenstra: To be published.

  30. H. Hibino, H. Kageshima, F. Maeda, M. Nagase, Y. Kobayashi, and H. Yamaguchi: Microscopic thickness dtermination of thin graphite films formed on SiC from quantized oscillation in reflectivity of low-energy electrons. Phys. Rev. B: Condens. Matter Mater. Phys. 77, 075413 (2008).

    Article  Google Scholar 

  31. Y. Qi, S.H. Rhim, G.F. Sun, M. Weinert, and L. Li: Epitaxial graphene on SiC(0001): More than just Honeycombs. Phys. Rev. Lett. 105, 085502 (2010).

    Article  CAS  Google Scholar 

  32. S. Dhingra, J-F. Hsu, I. Vlassiouk, and B. D’Urso: Chemical vapor deposition of graphene on large-domain ultra-flat copper. Carbon 69, 188 (2014).

    Article  CAS  Google Scholar 

  33. I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov: Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5, 6069 (2011).

    Article  CAS  Google Scholar 

  34. W. Święch, B. Rausenberger, W. Engel, A.M. Bradshaw, and E. Zeitler: In-situ studies of heterogeneous reactions using mirror electron microscopy. Surf. Sci. 294, 297 (1993).

    Article  Google Scholar 

  35. L. Reimer: Transmission Electron Microscopy, Springer Series in Optical Sciences, 4th ed., Vol. 36 (Springer, Berlin, 1997).

    Book  Google Scholar 

  36. S. Nie, W. Wu, S. Xing, Q. Yu, J. Bao, S-S. Pei, and K.F. McCarty: Growth from below: Bilayer graphene on copper by chemical vapor deposition. New J. Phys. 14, 093028 (2012).

    Article  Google Scholar 

  37. J.C. Koepke, J.W. Wood, D. Estrada, Z-Y. Ong, K.T. He, E. Pop, and J.W. Lyding: Atomic-scale evidence for potential barriers and strong carrier scattering at graphene grain boundaries: A scanning tunneling microscopy study. ACS Nano 7, 75 (2013).

    Article  CAS  Google Scholar 

  38. L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Riach, and R.E. Weber: Handbook of Auger Electron Spectroscopy, 2nd ed. (Perkin-Elmer Corporation, Eden Prairie, MN, 1978); p. 13.

    Google Scholar 

  39. P.R. Kidambi, R. Blume, J. Kling, J.B. Wagner, C. Baehtz, R.S. Weatherup, R. Schloegl, B.C. Bayer, and S. Hoffmann: In-situ observations during chemical vapor deposition of hexagonal boron nitride on polycrystalline copper. Chem. Mater. 26, 6380 (2014).

    Article  CAS  Google Scholar 

  40. Y. Zhang, Z. Li, P. Kim, L. Zhang, and C. Zhou: Anisotropic hydrogen etching of chemical vapor deposited graphene. ACS Nano 6, 126 (2012).

    Article  Google Scholar 

  41. L. Zhang, Y. Ye, D. Cheng, H. Pan, and J. Zhu: Intercalation of Li at the graphene/Cu interface. J. Phys. Chem. 117, 9259 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported in part by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall M. Feenstra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopalan, D.P., Mende, P.C., de la Barrera, S.C. et al. Formation of hexagonal boron nitride on graphene-covered copper surfaces. Journal of Materials Research 31, 945–958 (2016). https://doi.org/10.1557/jmr.2016.82

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.82

Navigation