Skip to main content
Log in

Fatigue stress concentration and notch sensitivity in nanocrystalline metals

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Recent studies have shown the potential for nanocrystalline metals to possess excellent fatigue resistance compared to their coarse-grained counterparts. Although the mechanical properties of nanocrystalline metals are believed to be particularly susceptible to material defects, a systematic study of the effects of geometric discontinuities on their fatigue performance has not yet been performed. In the present work, nanocrystalline Ni-40 wt%Fe containing both intrinsic and extrinsic defects were tested in tension-tension fatigue. The defects were found to dramatically reduce the fatigue resistance, which was attributed to the relatively high notch sensitivity in the nanocrystalline material. Microstructural analysis within the crack-initiation zones underneath the defects revealed cyclically-induced abnormal grain growth (AGG) as a predominant deformation and crack initiation mechanism during high-cycle fatigue. The onset of AGG and the ensuing fracture is likely accelerated by the stress concentrations, resulting in the reduced fatigue resistance compared to the relatively defect-free counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. H.A. Padilla, II and B.L. Boyce: A review of fatigue behavior in nanocrystalline metals. Exp. Mech. 50 (1), 5 (2010).

    Article  CAS  Google Scholar 

  2. T. Hanlon, Y.N. Kwon, and S. Suresh: Grain size effects on the fatigue response of nanocrystalline metals. Scr. Mater. 49 (7), 675 (2003).

    Article  CAS  Google Scholar 

  3. P. Cavaliere: Fatigue properties and crack behavior of ultra-fine and nanocrystalline pure metals. Int. J. Fatigue 31 (10), 1476 (2009).

    Article  CAS  Google Scholar 

  4. T. Hanlon, E.D. Tabachnikova, and S. Suresh: Fatigue behavior of nanocrystalline metals and alloys. Int. J. Fatigue 27 (10–12), 1147 (2005).

    Article  CAS  Google Scholar 

  5. B.L. Boyce and H.A. Padilla: Anomalous fatigue behavior and fatigue-induced grain growth in nanocrystalline nickel alloys. Metall. Mater. Trans. A 42, 1793 (2011).

    Article  CAS  Google Scholar 

  6. S. Kumar, M.T. Alam, and M.A. Haque: Fatigue insensitivity of nanoscale freestanding aluminum films. J. Microelectromech. Syst. 20 (1), 53 (2011).

    Article  CAS  Google Scholar 

  7. H. Garbacz, Z. Pakiela, and K.J. Kurzydlowski: Fatigue properties of nanocrystalline titanium. Rev. Adv. Mater. Sci. 25, 256 (2010).

    CAS  Google Scholar 

  8. A.B. Witney, P.G. Sanders, J.R. Weertman, and J.A. Eastman: Fatigue of nanocrystalline copper. Scr. Metall. Mater. 33 (12), 2025 (1995).

    Article  CAS  Google Scholar 

  9. C.C. Koch: Nanostructured Materials: Processing, Properties, and Applications, 2nd ed. (William Andrew, Norwich, 2007).

  10. P.G. Sanders, C.J. Youngdahl, and J.R. Weertman: The strength of nanocrystalline metals with and without flaws. Mater. Sci. Eng., A 234–236, 77 (1997).

    Article  Google Scholar 

  11. L.C. Lai, W.A. Chiou, and J.C. Earthman: Influence of electrical discharged machining and surface defects on the fatigue strength of electrodeposited nanocrystalline Ni. Int. J. Fatigue 32 (3), 584 (2010).

    Article  CAS  Google Scholar 

  12. R.C. Hugo, H. Kung, J.R. Weertman, R. Mitra, J.A. Knapp, and D.M. Follstaedt: In-situ TEM tensile testing of DC magnetron sputtered and pulsed laser deposited Ni thin films. Acta Mater. 51 (7), 1937 (2003).

    Article  CAS  Google Scholar 

  13. R.E. Peterson and R. Plunkett: Stress concentration factors. J. Appl. Mech. 42, 248 (1975).

    Article  Google Scholar 

  14. J.E. Bishop, J.M. Emery, R.V. Field, C.R. Weinberger, and D.J. Littlewood: Direct numerical simulations in solid mechanics for understanding the macroscale effects of microscale material variability. Comput. Methods Appl. Mech. Eng. 287, 262 (2015).

    Article  Google Scholar 

  15. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51 (4), 427 (2006).

    Article  CAS  Google Scholar 

  16. H.S. Kim and M.B. Bush: The effects of grain size and porosity on the elastic modulus of nanocrystalline materials. Nanostruct. Mater. 11 (3), 361 (1999).

    Article  CAS  Google Scholar 

  17. J.D. Giallonardo, U. Erb, K.T. Aust, and G. Palumbo: The influence of grain size and texture on the Young’s modulus of nanocrystalline nickel and nickel-iron alloys. Philos. Mag. 91 (36), 4594 (2011).

    Article  CAS  Google Scholar 

  18. C.S. Yen and T.J. Dolan: A critical review of the criteria for notch-sensitivity in fatigue of metals. Univ. Ill. Bull. 49 (53), 12 (1952).

    Google Scholar 

  19. S. Kumar, X. Li, A. Haque, and H. Gao: Is stress concentration relevant for nanocrystalline metals?Nano Lett. 11 (6), 2510 (2011).

    Article  CAS  Google Scholar 

  20. S. Kumar, M.A. Haque, and H. Gao: Notch insensitive fracture in nanoscale thin films. Appl. Phys. Lett. 94 (25), 253104 (2009).

    Article  CAS  Google Scholar 

  21. S. Suresh: Fatigue of Materials, 2nd ed. (Cambridge University Press, New York, 1998).

    Book  Google Scholar 

  22. G.E. Dieter: Mechanical Metallurgy, 3rd ed. (McGraw-Hill, Boston, 1986).

    Google Scholar 

  23. W.D. Pilkey and D.F. Pilkey: Peterson’s Stress Concentration Factors, 3rd ed. (John Wiley and Sons, Inc., Hoboken, 2008).

    Google Scholar 

  24. P. Lukáš, L. Kunz, and M. Svoboda: Fatigue notch sensitivity of ultrafine-grained copper. Mater. Sci. Eng., A 391 (1–2), 337 (2005).

    Article  CAS  Google Scholar 

  25. H. Garbacz, M. Motyka, W. Ziaja, M. Lewandowska, J. Sieniawski, and K. Topolski: High cycle fatigue strength of hydrostatically extruded nanocrystalline CP titanium. In Proceedings of the 12th World Conference on Titanium, Z. Lian, ed. (Science press, Beijing, 2011).

    Google Scholar 

  26. E. Hosseinian and O.N. Pierron: Quantitative in situ TEM tensile fatigue testing on nanocrystalline metallic ultrathin films. Nanoscale 5 (24), 12532 (2013).

    Article  CAS  Google Scholar 

  27. C. Suryanarayana: Experimental Techniques in Materials and Mechanics (CRC Press Taylor & Francis Group, Boca Raton, 2011); pp. 94–95.

    Book  Google Scholar 

  28. B.D. Cullity: Elements of X-ray Diffraction (Addison-Wesley publishing company, Inc., Reading, 1956).

    Google Scholar 

  29. A. Vicenzo: Structure and mechanical properties of electrodeposited Ni–Fe alloys. J. Electrochem. Soc. 160 (11), D570 (2013).

    Article  CAS  Google Scholar 

  30. Y. Ullal and A.C. Hegde: Electrodeposition and electro-catalytic study of nanocrystalline Ni–Fe alloy. Int. J. Hydrogen Energy 39 (20), 10485 (2014).

    Article  CAS  Google Scholar 

  31. M. Cymboliste: The formation and growth of pits in electrodeposited metals. J. Electrochem. Soc. 70 (1), 379 (1936).

    Article  Google Scholar 

  32. T. Watanabe: Nano-Plating: Microstructure Control Theory of Plated Film and Data Base of Plated Film Microstructure (Elsevier Inc., San Diego, 2004); pp. 82–84.

    Google Scholar 

  33. J.M. Bloom and J.C. Ekvall: Probabilistic Fracture Mechanics and Fatigue Methods: Applications for Structural Design and Maintenance (ASTM, Philiadelphia, 1981).

    Google Scholar 

  34. J.A. Sharon, H.A. Padilla, II, and B.L. Boyce: Interpreting the ductility of nanocrystalline metals. J. Mater. Res. 28 (12), 1539 (2013).

    Article  CAS  Google Scholar 

  35. Y. Yang, B. Imasogie, G.J. Fan, P.K. Liaw, and W.O. Soboyejo: Fatigue and fracture of a bulk nanocrystalline NiFe alloy. Metall. Mater. Trans. A 39 (5), 1145 (2008).

    Article  CAS  Google Scholar 

  36. R.I. Stephens, A. Fatemi, R.R. Stephens, and H.O. Fuchs: Metal Fatigue in Engineering, 2nd ed. (John Wiley & Sons, Inc., New York, 2001).

    Google Scholar 

  37. B. Moser, T. Hanlon, K.S. Kumar, and S. Suresh: Cyclic strain hardening of nanocrystalline nickel. Scr. Mater. 54 (6), 1151 (2006).

    Article  CAS  Google Scholar 

  38. J.F. Panzarino, J.J. Ramos, and T.J. Rupert: Quantitative tracking of grain structure evolution in a nanocrystalline metal during cyclic loading. Modell. Simul. Mater. Sci. Eng. 23, 025005 (2015).

    Article  CAS  Google Scholar 

  39. T-C. Hu, Y-T. Wang, F-C. Hsu, P-K. Sun, and M-T. Lin: Cyclic creep and fatigue testing of nanocrystalline copper thin films. Surf. Coat. Technol. 2185, 393 (2013).

    Article  CAS  Google Scholar 

  40. R.A. Meirom, D.H. Alsem, A.L. Romasco, T. Clark, R.G. Polcawich, J.S. Pulskamp, M. Dubey, R.O. Ritchie, and C.L. Muhlstein: Fatigue-induced grain coarsening in nanocrystalline platinum films. Acta Mater. 59 (3), 1141 (2011).

    Article  CAS  Google Scholar 

  41. J. Horky, G. Khatibi, D. Setman, B. Weiss, and M.J. Zehetbauer: Effect of microstructural stability on fatigue crack growth behaviour of nanostructured Cu. Mech. Mater. 67, 38 (2013).

    Article  Google Scholar 

  42. H. Mughrabi and H.W. Höppel: Cyclic deformation and fatigue properties of very fine-grained metals and alloys. Int. J. Fatigue 32 (9), 1413 (2010).

    Article  CAS  Google Scholar 

  43. S. Kobayashi, A. Kamata, and T. Watanabe: Roles of grain boundary microstructure in high-cycle fatigue of electrodeposited nanocrystalline Ni–P alloy. Scr. Mater. 61 (11), 1032 (2009).

    Article  CAS  Google Scholar 

  44. S. Kobayashi, A. Kamata, and T. Watanabe: A mechanism of grain growth-assisted intergranular fatigue fracture in electrodeposited nanocrystalline nickel–phosphorus alloy. Acta Mater. 91, 70 (2015).

    Article  CAS  Google Scholar 

  45. S. Cheng, S.Y. Lee, L. Li, C. Lei, J. Almer, X-L. Want, T. Ungar, Y. Wang, and P.K. Liaw: Uncommon deformation mechanisms during fatigue-crack propagation in nanocrystalline alloys. Phys. Rev. Lett. 110 (135501), 135501-1 (2013).

    Article  CAS  Google Scholar 

  46. X.W. Gu, Z. Wu, Y-W. Zhang, D.J. Srolovitz, and J.R. Greer: Microstructure versus flaw: Mechanisms of failure and strength in nanostructures. Nano Lett. 13 (11), 5703 (2013).

    Article  CAS  Google Scholar 

  47. G.M. Owolabi, R. Prasannavenkatesan, and D.L. McDowell: Probabilistic framework for a microstructure-sensitive fatigue notch factor. Int. J. Fatigue 32 (8), 1378 (2010).

    Article  CAS  Google Scholar 

  48. W. Ren and T. Nicholas: Notch size effects on high cycle fatigue limit stress of Udimet 720. Mater. Sci. Eng., A 357 (1–2), 141 (2003).

    Article  CAS  Google Scholar 

  49. A.J. McEvily, M. Endo, K. Yamashita, S. Ishihara, and H. Matsunaga: Fatigue notch sensitivity and the notch size effect. Int. J. Fatigue 30 (12), 2087 (2008).

    Article  Google Scholar 

  50. G. Pluvinage and J. Capelle: On characteristic lengths used in notch fracture mechanics. Int. J. Fract. 187, 187 (2014).

    Article  Google Scholar 

  51. R.O. Ritchie, J.F. Knott, and J.R. Rice: On the relationship between critcial tensile stress and fracture toughness in mild steel. J. Mech. Phys. Solids 21, 395 (1973).

    Article  CAS  Google Scholar 

  52. G. Pluvinage: Fracture and Fatigue Emanating from Stress Concentrators (Kluwer Academic Publishers, New York, 2004).

    Google Scholar 

  53. C.C. Battaile, J.M. Emery, L.N. Brewer, and B.L. Boyce: Crystal plasticity simulations of microstructure-induced uncertainty in strain concentration near voids in brass. Philos. Mag. 95 (10), 1069 (2015).

    Article  CAS  Google Scholar 

  54. P. Lukáš and M. Klesnil: Fatigue limit of notched bodies. Mater. Sci. Eng. 34 (1), 61 (1978).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Michael Rye for FIB notch preparation and microscopy support and Dr. Bill Mook and Amy Allen for additional microscopy support. The authors also thank Dr. Khalid Hattar and Dr. Stephen Foiles for careful internal review of this manuscript. This work was performed, in part, at the Center for Integrated Nanotechnologies, a United States Department of Energy, Office of Basic Energy Sciences user facility. This work was funded by the United States Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract No. DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad L. Boyce.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furnish, T.A., Boyce, B.L., Sharon, J.A. et al. Fatigue stress concentration and notch sensitivity in nanocrystalline metals. Journal of Materials Research 31, 740–752 (2016). https://doi.org/10.1557/jmr.2016.66

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.66

Navigation