Skip to main content
Log in

The effect of radio frequency power on the structural and optical properties of a-C:H films prepared by PECVD

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Hydrogenated amorphous carbon (a-C:H) films with a designed buffer layer of amorphous hydrogenated silicon carbide on the substrates were fabricated by plasma enhanced chemical vapor deposition (PECVD). The effect of radio frequency (RF) power on the structural and optical properties of a-C:H films was investigated. The ratios of sp3 to sp2 of carbon atoms and hydrogen contents in the RF power range of 75–175 W are determined and a similar trend as a function of power. The increase of sp3 to sp2 ratio leads to the increase of transmittance and optical gap of a-C:H films. a-C:H film under an RF power of 175 W possesses high transmissive ability (>80%) in the visible wave length, even the highest transmittance value of about 94.2% is achieved at the wave length 550 nm. These results show the optimal a-C:H films which are promising for the applications in the area of solar cells acting a window layer and antireflection layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. J. Robertson: Diamond-like amorphous carbon. Mater. Sci. Eng., R 37(4), 129 (2002).

    Article  Google Scholar 

  2. F. Chuang, C. Sun, H. Cheng, C. Huang, and I. Lin: Enhancement of electron emission efficiency of Mo tips by diamond like carbon coatings. Appl. Phys. Lett. 68(12), 1666 (1996).

    Article  CAS  Google Scholar 

  3. V. Aroutiounian, K. Martirosyan, and P. Soukiassian: Low reflectance of diamond-like carbon/porous silicon double layer antireflection coating for silicon solar cells. J. Phys. D: Appl. Phys. 37(19), L25 (2004).

    Article  CAS  Google Scholar 

  4. G. Pearce, N. Marks, D. McKenzie, and M. Bilek: Molecular dynamics simulation of the thermal spike in amorphous carbon thin films. Diamond Relat. Mater. 14(3), 921 (2005).

    Article  CAS  Google Scholar 

  5. J. Robertson: Ultrathin carbon coatings for magnetic storage technology. Thin Solid Films 383(1), 81 (2001).

    Article  CAS  Google Scholar 

  6. P.R. Goglia, J. Berkowitz, J. Hoehn, A. Xidis, and L. Stover: Diamond-like carbon applications in high density hard disc recording heads. Diamond Relat. Mater. 10(2), 271 (2001).

    Article  CAS  Google Scholar 

  7. R. Hauert: A review of modified DLC coatings for biological applications. Diamond Relat. Mater. 12(3), 583 (2003).

    Article  CAS  Google Scholar 

  8. A.C. Ferrari: Diamond-like carbon for magnetic storage disks. Surf. Coat. Technol. 180, 190 (2004).

    Article  CAS  Google Scholar 

  9. S. Singh, M. Pandey, N. Chand, A. Biswas, D. Bhattacharya, S. Dash, A. Tyagi, R. Dey, S. Kulkarni, and D. Patil: Optical and mechanical properties of diamond like carbon films deposited by microwave ECR plasma CVD. Bull. Mater. Sci. 31(5), 813 (2008).

    Article  CAS  Google Scholar 

  10. M. Allon-Alaluf, J. Appelbaum, M. Maharizi, A. Seidman, and N. Croitoru: The influence of diamond-like carbon films on the properties of silicon solar cells. Thin Solid Films 303(1), 273 (1997).

    Article  CAS  Google Scholar 

  11. C.H. Lee and K.S. Lim: Carrier transport through boron-doped amorphous diamond-like carbon p layer of amorphous silicon based p–i–n solar cells. Appl. Phys. Lett. 75(4), 569 (1999).

    Article  CAS  Google Scholar 

  12. Y. Hattori, D. Kruangam, T. Toyama, H. Okamoto, and Y. Hamakawa: Highly conductive p-type microcrystalline SiC:H prepared by ECR plasma CVD. Appl. Surf. Sci. 33, 1276 (1988).

    Article  Google Scholar 

  13. Y. Hamakawa, T. Toyama, and H. Okamoto: Blue light emission from a-C:H by thin film electroluminescence structure cell. J. Non-Cryst. Solids 115(1), 180 (1989).

    Article  CAS  Google Scholar 

  14. J.Y. Shim, E.J. Chi, H.K. Baik, and S.M. Lee: Structural, optical, and field emission properties of hydrogenated amorphous carbon films grown by helical resonator plasma enhanced chemical vapor deposition. Jpn. J. Appl. Phys. 37(2R), 440 (1998).

    Article  CAS  Google Scholar 

  15. Y. Lu, S. Huang, C. Huan, and X. Luo: Amorphous hydrogenated carbon synthesized by pulsed laser deposition from cyclohexane. Appl. Phys. A 68(6), 647 (1999).

    Article  CAS  Google Scholar 

  16. C. Weissmantel, K. Bewilogua, D. Dietrich, H-J. Erler, H-J. Hinneberg, S. Klose, W. Nowick, and G. Reisse: Structure and properties of quasi-amorphous films prepared by ion beam techniques. Thin Solid Films 72(1), 19 (1980).

    Article  CAS  Google Scholar 

  17. Y.S. Park, H.J. Cho, and B. Hong: Characteristics of conductive amorphous carbon (aC) films prepared by using the magnetron sputtering method. J. Korean Phys. Soc. 51(3), 1119 (2007).

    Article  CAS  Google Scholar 

  18. B. Tay, Z. Zhao, and D. Chua: Review of metal oxide films deposited by filtered cathodic vacuum arc technique. Mater. Sci. Eng., R 52(1), 1 (2006).

    Article  CAS  Google Scholar 

  19. N. Dwivedi, S. Kumar, H. Malik, C. Rauthan, and O. Panwar: Correlation of sp3 and sp2 fraction of carbon with electrical, optical and nano-mechanical properties of argon-diluted diamond-like carbon films. Appl. Surf. Sci. 257(15), 6804 (2011).

    Article  CAS  Google Scholar 

  20. É.C. Oliveira, S.A. Cruz, and P.H. Aguiar: Effect of PECVD deposition parameters on the DLC/PLC composition of a-C:H thin films. J. Braz. Chem. Soc. 23(9), 1657 (2012).

    Article  CAS  Google Scholar 

  21. J. Wu, Y-L. Wang, and C-T. Kuo: Plasma treatment effects on hydrogenated amorphous carbon films prepared by plasma-enhanced chemical vapor deposition. J. Phys. Chem. Solids 69(2), 505 (2008).

    Article  CAS  Google Scholar 

  22. I. Ahmad, S. Roy, M.A. Rahman, T. Okpalugo, P. Maguire, and J. Mc Laughlin: Substrate effects on the microstructure of hydrogenated amorphous carbon films. Curr. Appl. Phys. 9(5), 937 (2009).

    Article  Google Scholar 

  23. C. Schwarz, J. Heeg, M. Rosenberg, and M. Wienecke: Investigation on wear and adhesion of graded Si/SiC/DLC coatings deposited by plasma-enhanced-CVD. Diamond Relat. Mater. 17(7), 1685 (2008).

    Article  CAS  Google Scholar 

  24. F. Cemin, L. Bim, C. Menezes, C. Aguzzoli, M.M. da Costa, I. Baumvol, F. Alvarez, and C. Figueroa: On the hydrogenated silicon carbide (SiCx:H) interlayer properties prompting adhesion of hydrogenated amorphous carbon (a-C:H) deposited on steel. Vacuum 109, 180 (2014).

    Article  CAS  Google Scholar 

  25. A.S. Glaude, L. Thomas, E. Tomasella, J. Badie, and R. Berjoan: Selective effect of ion/surface interaction in low frequency PACVD of SiC:H films: Part B. Microstructural study. Surf. Coat. Technol. 201(1), 174 (2006).

    Article  CAS  Google Scholar 

  26. K. Nass, P. Radi, D. Leite, M. Massi, A. da Silva Sobrinho, R. Dutra, L. Vieira, and D. Reis: Tribomechanical and structural properties of a-SiC:H films deposited using liquid precursors on titanium alloy. Surf. Coat. Technol. 284, 240 (2015).

    Article  CAS  Google Scholar 

  27. A. Soum-Glaude, L. Thomas, E. Tomasella, J. Badie, and R. Berjoan: Selective effect of ion/surface interaction in low frequency PACVD of SiC:H films: Part A. Gas phase considerations. Surf. Coat. Technol. 200(1), 855 (2005).

    Article  CAS  Google Scholar 

  28. B. Dischler, A. Bubenzer, and P. Koidl: Bonding in hydrogenated hard carbon studied by optical spectroscopy. Solid State Commun. 48(2), 105 (1983).

    Article  CAS  Google Scholar 

  29. P. Couderc and Y. Catherine: Structure and physical properties of plasma-grown amorphous hydrogenated carbon films. Thin Solid Films 146(1), 93 (1987).

    Article  CAS  Google Scholar 

  30. Z. Akkerman, H. Efstathiadis, and F. Smith: Thermal stability of diamond like carbon films. J. Appl. Phys. 80(5), 3068 (1996).

    Article  CAS  Google Scholar 

  31. D. Basa and F. Smith: Annealing and crystallization processes in a hydrogenated amorphous SiC alloy film. Thin Solid Films 192(1), 121 (1990).

    Article  CAS  Google Scholar 

  32. Y. Lifshitz, S. Kasi, J. Rabalais, and W. Eckstein: Subplantation model for film growth from hyperthermal species. Phys. Rev. B: Condens. Matter Mater. Phys. 41(15), 10468 (1990).

    Article  CAS  Google Scholar 

  33. J. Robertson: The deposition mechanism of diamond-like a-C and a-C:H. Diamond Relat. Mater. 3(4–6), 361 (1994).

    Article  CAS  Google Scholar 

  34. A. Rhallabi and Y. Catherine: Computer simulation of a carbon-deposition plasma in CH4. IEEE Trans. Plasma Sci. 19(2), 270 (1991).

    Article  CAS  Google Scholar 

  35. N.V. Mantzaris, E. Gogolides, A.G. Boudouvis, A. Rhallabi, and G. Turban: Surface and plasma simulation of deposition processes: CH4 plasmas for the growth of diamond like carbon. J. Appl. Phys. 79(7), 3718 (1996).

    Article  Google Scholar 

  36. N. Mutsukura and K. Saitoh: Temperature dependence of a-C:H film deposition in a CH4 radio frequency plasma. J. Vac. Sci. Technol., A 14(4), 2666 (1996).

    Article  CAS  Google Scholar 

  37. J. Robertson: Properties of diamond-like carbon. Surf. Coat. Technol. 50(3), 185 (1992).

    Article  CAS  Google Scholar 

  38. X. Liu, R. Yamaguchi, N. Umehara, X. Deng, H. Kousaka, and M. Murashima: Clarification of high wear resistance mechanism of ta-CNx coating under poly alpha-olefin (PAO) lubrication. Tribol. Int. 105, 193 (2017).

    Article  CAS  Google Scholar 

  39. J. Schwan, S. Ulrich, V. Batori, H. Ehrhardt, and S. Silva: Raman spectroscopy on amorphous carbon films. J. Appl. Phys. 80(1), 440 (1996).

    Article  CAS  Google Scholar 

  40. A. Ferrari and J. Robertson: Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon. Phys. Rev. B: Condens. Matter Mater. Phys. 64(7), 075414 (2001).

    Article  CAS  Google Scholar 

  41. N. Colthup, L. Daly, and S. Wiberley: Introduction to Infrared and Raman Spectroscopy, Vol. 23 (Academic Press, New York, 1975).

    Google Scholar 

  42. L.C. Nistor, J. Van Landuyt, V. Ralchenko, T. Kononenko, E.D. Obraztsova, and V. Strelnitsky: Direct observation of laser-induced crystallization of a-C:H films. Appl. Phys. A 58(2), 137 (1994).

    Article  Google Scholar 

  43. E. Cappelli, S. Orlando, G. Mattei, S. Zoffoli, and P. Ascarelli: SEM and Raman investigation of RF plasma assisted pulsed laser deposited carbon films. Appl. Surf. Sci. 197, 452 (2002).

    Article  Google Scholar 

  44. T. Paulmier, J.M. Bell, and P.M. Fredericks: Deposition of nano-crystalline graphite films by cathodic plasma electrolysis. Thin Solid Films 515(5), 2926 (2007).

    Article  CAS  Google Scholar 

  45. J. Sui, Z. Gao, W. Cai, and Z. Zhang: Corrosion behavior of NiTi alloys coated with diamond-like carbon (DLC) fabricated by plasma immersion ion implantation and deposition. Mater. Sci. Eng., A 452, 518 (2007).

    Article  CAS  Google Scholar 

  46. J-K. Shin, C.S. Lee, K-R. Lee, and K.Y. Eun: Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphous carbon films. Appl. Phys. Lett. 78(5), 631 (2001).

    Article  CAS  Google Scholar 

  47. A. Ferrari, S. Rodil, and J. Robertson: Interpretation of infrared and Raman spectra of amorphous carbon nitrides. Phys. Rev. B: Condens. Matter Mater. Phys. 67(15), 155306 (2003).

    Article  CAS  Google Scholar 

  48. R. Al-Jishi and G. Dresselhaus: Lattice-dynamical model for graphite. Phys. Rev. B: Condens. Matter Mater. Phys. 26(8), 4514 (1982).

    Article  CAS  Google Scholar 

  49. R. Dillon, J.A. Woollam, and V. Katkanant: Use of Raman scattering to investigate disorder and crystallite formation in as-deposited and annealed carbon films. Phys. Rev. B: Condens. Matter Mater. Phys. 29(6), 3482 (1984).

    Article  CAS  Google Scholar 

  50. N. Cho, D. Veirs, J. Ager Iii, M. Rubin, C. Hopper, and D. Bogy: Effects of substrate temperature on chemical structure of amorphous carbon films. J. Appl. Phys. 71(5), 2243 (1992).

    Article  CAS  Google Scholar 

  51. T. Herak, R. McLeod, K. Kao, H. Card, H. Watanabe, K. Katoh, M. Yasui, and Y. Shibata: Undoped amorphous SiNx:H alloy semiconductors: Dependence of electronic properties on composition. J. Non-Cryst. Solids 69(1), 39 (1984).

    Article  CAS  Google Scholar 

  52. J. Robertson and E. O’reilly: Electronic and atomic structure of amorphous carbon. Phys. Rev. B: Condens. Matter Mater. Phys. 35(6), 2946 (1987).

    Article  CAS  Google Scholar 

  53. J. Robertson: Gap states in diamond-like amorphous carbon. Philos. Mag. B 76(3), 335 (1997).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by the National Natural Science Foundation of China (11374181 and 61604087).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyu Tan or Lihua Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Tan, X., Jiang, L. et al. The effect of radio frequency power on the structural and optical properties of a-C:H films prepared by PECVD. Journal of Materials Research 32, 1231–1238 (2017). https://doi.org/10.1557/jmr.2016.522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.522

Navigation