Skip to main content

Advertisement

Log in

An X-ray scattering and electron microscopy study of methylammonium bismuth perovskites for solar cell applications

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Photovoltaics made from organic–inorganic hybrid perovskite semiconductors are attracting significant interest due to their ability to harvest sunlight with remarkable efficiency. The presence of lead in the best performing devices raises concerns regarding their toxicity, a problem that may create barriers to commercialization. Hybrid perovskites with reduced lead content are being investigated to overcome this issue and here we evaluate bismuth as a possible lead substitute. For a series of hybrid perovskite films with the general composition CH3NH3(PbyBi1− y)I3− xClx, we characterize their optical and structural properties using UV–Vis spectroscopy, scanning electron microscopy and grazing incidence wide angle X-ray scattering. We show that they form crystalline structures with an optical band gap, around 2 eV for CH3NH3BiI3. However, preliminary solar cell tests show low power conversion efficiencies (<0.01%) due to both incomplete precursor conversion and material de-wetting from the substrate. The overall outcome is severely limited photocurrent. With current processing methods the general applicability of hybrid bismuth perovskites in photovoltaics may be limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. S.E. Shaheen, D.S. Ginley, and G.E. Jabbour: Organic-based photovoltaics: Toward low-cost power generation. MRS Bull. 30(1), 10 (2005).

    Article  CAS  Google Scholar 

  2. D.Y. Liu and T.L. Kelly: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8(2), 133 (2014).

    Article  CAS  Google Scholar 

  3. M.Z. Liu, M.B. Johnston, and H.J. Snaith: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395 (2013).

    Article  CAS  Google Scholar 

  4. J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Gratzel: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316 (2013).

    Article  CAS  Google Scholar 

  5. J.M. Ball, M.M. Lee, A. Hey, and H.J. Snaith: Low-temperature processed meso-superstructured to thin-film perovskite solar cells. Energy Environ. Sci. 6(6), 1739 (2013).

    Article  CAS  Google Scholar 

  6. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643 (2012).

    Article  CAS  Google Scholar 

  7. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith: Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982 (2014).

    Article  CAS  Google Scholar 

  8. N. Pellet, P. Gao, G. Gregori, T.Y. Yang, M.K. Nazeeruddin, J. Maier, and M. Gratzel: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem., Int. Ed. 53(12), 3151 (2014).

    Article  CAS  Google Scholar 

  9. S.P. Pang, H. Hu, J.L. Zhang, S.L. Lv, Y.M. Yu, F. Wei, T.S. Qin, H.X. Xu, Z.H. Liu, and G.L. Cui: NH2CH=NH2PbI3: An alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26(3), 1485 (2014).

    Article  CAS  Google Scholar 

  10. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764 (2013).

    Article  CAS  Google Scholar 

  11. N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herz, and H.J. Snaith: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7(9), 3061 (2014).

    Article  CAS  Google Scholar 

  12. NREL: http://www.nrel.gov/ncpv/images/efficiency_chart.jpg, (National Renewable Energy Laboratory, Golden, CO).

  13. P.J. Landrigan: Toxicity of lead at low-dose. Br. J. Ind. Med. 46(9), 593 (1989).

    CAS  Google Scholar 

  14. G. Flora, D. Gupta, and A. Tiwari: Toxicity of lead: A review with recent updates. Interdiscip. Toxicol. 5(2), 47 (2012).

    Article  CAS  Google Scholar 

  15. A. Babayigit, A. Ethirajan, M. Muller, and B. Conings: Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15(3), 247 (2016).

    Article  CAS  Google Scholar 

  16. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T.L. Ma, and S. Hayase: CH3NH3SnxPb(1− x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5(6), 1004 (2014).

    Article  CAS  Google Scholar 

  17. F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, and M.G. Kanatzidis: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8(6), 489 (2014).

    Article  CAS  Google Scholar 

  18. W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, and R.G. Palgrave: On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chem. Sci. 7, 4548 (2016).

    Article  CAS  Google Scholar 

  19. B.W. Park, B. Philippe, X.L. Zhang, H. Rensmo, G. Boschloo, and E.M.J. Johansson: Bismuth based hybrid perovskites A(3)Bi(2)I(9) (A: methylammonium or cesium) for solar cell application. Adv. Mater. 27(43), 6806 (2015).

    Article  CAS  Google Scholar 

  20. A.H. Slavney, T. Hu, A.M. Lindenberg, and H.I. Karunadasa: A bismuth-halide double perovskite with long carrier recombination lifetime for photovoltaic applications. J. Am. Chem. Soc. 138(7), 2138 (2016).

    Article  CAS  Google Scholar 

  21. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis, and R. Mosca: MAPbl(3− x)Clx mixed halide perovskite for hybrid solar cells: The role of chloride as dopant on the transport and structural properties. Chem. Mater. 25(22), 4613 (2013).

    Article  CAS  Google Scholar 

  22. S.A. Kulkarni, T. Baikie, P.P. Boix, N. Yantara, N. Mathews, and S. Mhaisalkar: Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2(24), 9221 (2014).

    Article  CAS  Google Scholar 

  23. C. Bi, Y.C. Shao, Y.B. Yuan, Z.G. Xiao, C.G. Wang, Y.L. Gao, and J.S. Huang: Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing. J. Mater. Chem. A 2(43), 18508 (2014).

    Article  CAS  Google Scholar 

  24. Y. Tian and I.G. Scheblykin: Artifacts in absorption measurements of organometal halide perovskite materials: What are the real spectra? J. Phys. Chem. Lett. 6(17), 3466 (2015).

    Article  CAS  Google Scholar 

  25. T. Ondarçuhu and J.P. Aimé: Nanoscale Liquid Interfaces: Wetting, Patterning and Force Microscopy at the Molecular Scale (Pan Stanford publishing, Singapore, 2013).

    Book  Google Scholar 

  26. Y.X. Zhao and K. Zhu: CH3NH3Cl-assisted one-step solution growth of CH(3)NH(3)Pbl(3): Structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118(18), 9412 (2014).

    Article  CAS  Google Scholar 

  27. H. Yu, F. Wang, F.Y. Xie, W.W. Li, J. Chen, and N. Zhao: The role of chlorine in the formation process of “CH3NH3PbI3− xCl(x)” perovskite. Adv. Funct. Mater. 24(45), 7102 (2014).

    CAS  Google Scholar 

  28. E.L. Unger, A.R. Bowring, C.J. Tassone, V.L. Pool, A. Gold-Parker, R. Cheacharoen, K.H. Stone, E.T. Hoke, M.F. Toney, and M.D. McGehee: Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26(24), 7158 (2014).

    Article  CAS  Google Scholar 

  29. L.Q. Zhang, X.W. Zhang, Z.G. Yin, Q. Jiang, X. Liu, J.H. Meng, Y.J. Zhao, and H.L. Wang: Highly efficient and stable planar heterojunction perovskite solar cells via a low temperature solution process. J. Mater. Chem. A 3(23), 12133 (2015).

    Article  CAS  Google Scholar 

  30. K.W. Tan, D.T. Moore, M. Saliba, H. Sai, L.A. Estroff, T. Hanrath, H.J. Snaith, and U. Wiesner: Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano 8(5), 4730 (2014).

    Article  CAS  Google Scholar 

  31. B.W. Park, B. Philippe, T. Gustafsson, K. Sveinbjornsson, A. Hagfeldt, E.M.J. Johansson, and G. Boschloo: Enhanced crystallinity in organic–inorganic lead halide perovskites on mesoporous TiO2 via disorder-order phase transition. Chem. Mater. 26(15), 4466 (2014).

    Article  CAS  Google Scholar 

  32. T. Baikie, Y.N. Fang, J.M. Kadro, M. Schreyer, F.X. Wei, S.G. Mhaisalkar, M. Graetzel, and T.J. White: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1(18), 5628 (2013).

    Article  CAS  Google Scholar 

  33. J.H. Im, C.R. Lee, J.W. Lee, S.W. Park, and N.G. Park: 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3(10), 4088 (2011).

    Article  CAS  Google Scholar 

  34. C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019 (2013).

    Article  CAS  Google Scholar 

  35. S.J. Yoon, K.G. Stamplecoskie, and P.V. Kamat: How lead halide complex chemistry dictates the composition of mixed halide perovskites. J. Phys. Chem. Lett. 7(7), 1368 (2016).

    Article  CAS  Google Scholar 

  36. CrystalMaker Software Limited: http://www.crystalmaker.com/crystaldiffract/. Centre for Innovation & Enterprise, Oxford University Begbroke Science Park, Woodstock Road Begbroke, Oxfordshire, OX5 1PF UK.

  37. A.T. Barrows, A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, and D.G. Lidzey: Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7(9), 2944 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We gratefully acknowledge funding from the EPSRC through research grants EP/M025020/1 “High resolution mapping of performance and degradation mechanisms in printable photovoltaic devices” and EP/J017361/1 “Supergen Supersolar Hub.” We thank Diamond Light Source for access to beamline I07 (SI11676-1) that contributed to the results presented here and we acknowledge Jonathan Rawle and Jonathan Griffin for their assistance during the GIWAXS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan D. F. Dunbar.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwak, C.K., Barrows, A.T., Pearson, A.J. et al. An X-ray scattering and electron microscopy study of methylammonium bismuth perovskites for solar cell applications. Journal of Materials Research 32, 1888–1898 (2017). https://doi.org/10.1557/jmr.2016.499

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.499

Navigation