Skip to main content
Log in

Toward a better understanding of conjugated polymer blends with non-spherical small molecules: coupling of molecular structure to polymer chain microstructure

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A major obstacle in the organic solar cell field is the inability to predict the relevant microstructural length scales that determine charge transport of the interpenetrating polymer/small molecule network based on the component chemical structures. This has led to a trial-and-error approach, which is extremely labor-intensive. This manuscript is our attempt to move toward forming a link between small molecule chemical structure and the morphological hierarchy of the blend. We focus on geometric motifs of small molecule organic semiconductors which have 2D, nonspherical 3D, and quasispherical 3D molecular orbital extent. We find that phase separation in these blends is a function of the molecular structure, and that the small molecule chemical structure is coupled to the crystallite orientation distribution of the polymer matrix. We further find that the ability of a molecule to form a network with a well-defined length scale of phase separation depends on the polymer persistence length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. N.S. Sariciftci, L. Smilowitz, D. Braun, G. Srdanov, V. Srdanov, F. Wudl, and A.J. Heeger: Observation of a photoinduced electron transfer from a conducting polymer (MEHPPV) onto C60. Synth. Met. 56(2), 3125 (1993).

    Article  CAS  Google Scholar 

  2. C.Y. Yang and A.J. Heeger: Morphology of composites of semiconducting polymers mixed with C60. Synth. Met. 83(2), 85 (1996).

    Article  CAS  Google Scholar 

  3. G. Dennler, M.C. Scharber, and C.J. Brabec: Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21(13), 1323 (2009).

    Article  CAS  Google Scholar 

  4. Y. Huang, E.J. Kramer, A.J. Heeger, and G.C. Bazan: Bulk heterojunction solar cells: morphology and performance relationships. Chem. Rev. 114(14), 7006 (2014).

    Article  CAS  Google Scholar 

  5. S.H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J.S. Moon, D. Moses, M. Leclerc, K. Lee, and A.J. Heeger: Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 3(5), 297 (2009).

    Article  CAS  Google Scholar 

  6. K. Vandewal, S. Himmelberger, and A. Salleo: Structural factors that affect the performance of organic bulk heterojunction solar cells. Macromolecules 46(16), 6379 (2013).

    Article  CAS  Google Scholar 

  7. K. Vandewal, K. Tvingstedt, and O. Inganäs: Charge transfer states in organic donor–acceptor sol cells. Semicond. Semimetals 85, 261 (2011).

    Article  CAS  Google Scholar 

  8. S.D. Dimitrov and J.R. Durrant: Materials design considerations for charge generation in organic solar cells. Chem. Mater. 26(1), 616 (2014).

    Article  CAS  Google Scholar 

  9. J.T. Rogers, K. Schmidt, M.F. Toney, E.J. Kramer, and G.C. Bazan: Structural order in bulk heterojunction films prepared with solvent additives. Adv. Mater. 23(20), 2284 (2011).

    Article  CAS  Google Scholar 

  10. A.L. Ayzner, D.D. Wanger, C.J. Tassone, S.H. Tolbert, and B.J. Schwartz: Room to improve conjugated polymer-based solar cells: Understanding how thermal annealing affects the fullerene component of a bulk heterojunction photovoltaic device. J. Phys. Chem. C 112(48), 18711 (2008).

    Article  CAS  Google Scholar 

  11. E. Verploegen, R. Mondal, C.J. Bettinger, S. Sok, M.F. Toney, and Z. Bao: Effects of thermal annealing upon the morphology of polymer–fullerene blends. Adv. Funct. Mater. 20(20), 3519 (2010).

    Article  CAS  Google Scholar 

  12. L. Zheng, J. Liu, Y. Ding, and Y. Han: Morphology evolution and structural transformation of solution-processed methanofullerene thin film under thermal annealing. J. Phys. Chem. B 115(25), 8071 (2011).

    Article  CAS  Google Scholar 

  13. D.M. DeLongchamp, R.J. Kline, D.A. Fischer, L.J. Richter, and M.F. Toney: Molecular characterization of organic electronic films. Adv. Mater. 23(3), 319 (2011).

    Article  CAS  Google Scholar 

  14. D. Kurrle and J. Pflaum: Exciton diffusion length in the organic semiconductor diindenoperylene. Appl. Phys. Lett. 92(13), 133306 (2008).

    Article  CAS  Google Scholar 

  15. J.D.A. Lin, O.V. Mikhnenko, J. Chen, Z. Masri, A. Ruseckas, A. Mikhailovsky, R.P. Raab, J. Liu, P.W.M. Blom, M.A. Loi, C.J. García-Cervera, I.D.W. Samuel, and T-Q. Nguyen: Systematic study of exciton diffusion length in organic semiconductors by six experimental methods. Mater. Horiz. 1(2), 280 (2014).

    Article  CAS  Google Scholar 

  16. W.A. Luhman and R.J. Holmes: Investigation of energy transfer in organic photovoltaic cells and impact on exciton diffusion length measurements. Adv. Funct. Mater. 21(4), 764 (2011).

    Article  CAS  Google Scholar 

  17. R.R. Lunt, J.B. Benziger, and S.R. Forrest: Relationship between crystalline order and exciton diffusion length in molecular organic semiconductors. Adv. Mater. 22(11), 1233 (2010).

    Article  CAS  Google Scholar 

  18. R.R. Lunt, N.C. Giebink, A.A. Belak, J.B. Benziger, and S.R. Forrest: Exciton diffusion lengths of organic semiconductor thin films measured by spectrally resolved photoluminescence quenching. J. Appl. Phys. 105(5), 053711 (2009).

    Article  CAS  Google Scholar 

  19. S-B. Rim, R.F. Fink, J.C. Schöneboom, P. Erk, and P. Peumans: Effect of molecular packing on the exciton diffusion length in organic solar cells. Appl. Phys. Lett. 91(17), 173504 (2007).

    Article  CAS  Google Scholar 

  20. J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C.C. Chen, J. Gao, G. Li, and Y. Yang: A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 4, 1446 (2013).

    Article  CAS  Google Scholar 

  21. L. Pandey, C. Risko, J.E. Norton, and J-L. Brédas: Donor–acceptor copolymers of relevance for organic photovoltaics: A theoretical investigation of the impact of chemical structure modifications on the electronic and optical properties. Macromolecules 45(16), 6405 (2012).

    Article  CAS  Google Scholar 

  22. D.H. Kim, A.L. Ayzner, A.L. Appleton, K. Schmidt, J. Mei, M.F. Toney, and Z. Bao: Comparison of the photovoltaic characteristics and nanostructure of fullerenes blended with conjugated polymers with siloxane-terminated and branched aliphatic side chains. Chem. Mater. 25(3), 431 (2013).

    Article  CAS  Google Scholar 

  23. T. Liu and A. Troisi: What makes fullerene acceptors special as electron acceptors in organic solar cells and how to replace them. Adv. Mater. 25(7), 1038 (2013).

    Article  CAS  Google Scholar 

  24. G. Sauvé and R. Fernando: Beyond fullerenes: Designing alternative molecular electron acceptors for solution-processable bulk heterojunction organic photovoltaics. J. Phys. Chem. Lett. 6(18), 3770 (2015).

    Article  CAS  Google Scholar 

  25. G. Orlandi and F. Negri: Electronic states and transitions in C60 and C70 fullerenes. Photochem. Photobiol. Sci. 1(5), 289 (2002).

    Article  CAS  Google Scholar 

  26. R. Shivanna, S. Shoaee, S. Dimitrov, S.K. Kandappa, S. Rajaram, J.R. Durrant, and K.S. Narayan: Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor. Energy Environ. Sci. 7(1), 435 (2014).

    Article  CAS  Google Scholar 

  27. D. Beljonne, J.r.m. Cornil, L. Muccioli, C. Zannoni, J-L. Brédas, and F.d.r. Castet: Electronic processes at organic–organic interfaces: Insight from modeling and implications for opto-electronic devices†. Chem. Mater. 23(3), 591 (2011).

    Article  CAS  Google Scholar 

  28. B.P. Rand, D. Cheyns, K. Vasseur, N.C. Giebink, S. Mothy, Y. Yi, V. Coropceanu, D. Beljonne, J. Cornil, J-L. Brédas, and J. Genoe: The impact of molecular orientation on the photovoltaic properties of a phthalocyanine/fullerene heterojunction. Adv. Funct. Mater. 22(14), 2987 (2012).

    Article  CAS  Google Scholar 

  29. A.L. Ayzner, D. Nordlund, D-H. Kim, Z. Bao, and M.F. Toney: Ultrafast electron transfer at organic semiconductor interfaces: Importance of molecular orientation. J. Phys. Chem. Lett. 6(1), 6 (2015).

    Article  CAS  Google Scholar 

  30. S. Wang, S. Fabiano, S. Himmelberger, S. Puzinas, X. Crispin, A. Salleo, and M. Berggren: Experimental evidence that short-range intermolecular aggregation is sufficient for efficient charge transport in conjugated polymers. Proc. Natl. Acad. Sci. U. S. A. 112(34), 10599 (2015).

    Article  CAS  Google Scholar 

  31. J. Als-Nielsen, D. Jacquemain, K. Kjaer, F. Leveiller, M. Lahav, and L. Leiserowitz: Principles and applications of grazing incidence X-ray and neutron scattering from ordered molecular monolayers at the air–water interface. Phys. Rep. 246(5), 251 (1994).

    Article  CAS  Google Scholar 

  32. A.C. Cruickshank, C.J. Dotzler, S. Din, S. Heutz, M.F. Toney, and M.P. Ryan: The crystalline structure of copper phthalocyanine films on ZnO(1100). J. Am. Chem. Soc. 134(35), 14302 (2012).

    Article  CAS  Google Scholar 

  33. S.E. Fritz, S.M. Martin, C.D. Frisbie, M.D. Ward, and M.F. Toney: Structural characterization of a pentacene monolayer on an amorphous SiO2 substrate with grazing incidence x-ray diffraction. J. Am. Chem. Soc. 126(13), 4084 (2004).

    Article  CAS  Google Scholar 

  34. M. Ofuji, K. Inaba, K. Omote, H. Hoshi, Y. Takanishi, K. Ishikawa, and H. Takezoe: Grazing incidence in-plane X-ray diffraction study on oriented copper phthalocyanine thin films. Jpn. J. Appl. Phys., Part 1 41(8), 5467 (2002).

    Article  CAS  Google Scholar 

  35. G.H. Vineyard: Grazing-incidence diffraction and the distorted-wave approximation for the study of surfaces. Phys. Rev. B: Condens. Matter Mater. Phys. 26(8), 4146 (1982).

    Article  CAS  Google Scholar 

  36. N.D. Treat, M.A. Brady, G. Smith, M.F. Toney, E.J. Kramer, C.J. Hawker, and M.L. Chabinyc: Interdiffusion of PCBM and P3HT reveals miscibility in a photovoltaically active blend. Adv. Energy Mater. 1(1), 82 (2011).

    Article  CAS  Google Scholar 

  37. D. Gargi, R.J. Kline, D.M. DeLongchamp, D.A. Fischer, M.F. Toney, and B.T. O’Connor: Charge transport in highly face-on poly(3-hexylthiophene) films. J. Phys. Chem. C 117(34), 17421 (2013).

    Article  CAS  Google Scholar 

  38. B. O’Connor, R.J. Kline, B.R. Conrad, L.J. Richter, D. Gundlach, M.F. Toney, and D.M. DeLongchamp: Anisotropic structure and charge transport in highly strain-aligned regioregular poly(3-hexylthiophene). Adv. Funct. Mater. 21(19), 3697 (2011).

    Article  CAS  Google Scholar 

  39. J.L. Baker, L.H. Jimison, S. Mannsfeld, S. Volkman, S. Yin, V. Subramanian, A. Salleo, A.P. Alivisatos, and M.F. Toney: Quantification of thin film crystallographic orientation using x-ray diffraction with an area detector. Langmuir 26(11), 9146 (2010).

    Article  CAS  Google Scholar 

  40. S. Guo, M.A. Ruderer, M. Rawolle, V. Korstgens, C. Birkenstock, J. Perlich, and P. Muller-Buschbaum: Evolution of lateral structures during the functional stack build-up of P3HT:PCBM-based bulk heterojunction solar cells. ACS Appl. Mater. Interfaces 5(17), 8581 (2013).

    Article  CAS  Google Scholar 

  41. M. Rauscher, T. Salditt, and H. Spohn: Small-angle X-ray scattering under grazing incidence: The cross section in the distorted-wave Born approximation. Phys. Rev. B: Condens. Matter Mater. Phys. 52(23), 16855 (1995).

    Article  CAS  Google Scholar 

  42. G. Renaud, R. Lazzari, and F. Leroy: Probing surface and interface morphology with grazing incidence small angle X-ray scattering. Surf. Sci. Rep. 64(8), 255 (2009).

    Article  CAS  Google Scholar 

  43. G. Ungar, F. Liu, X.B. Zeng, B. Glettner, M. Prehm, R. Kieffer, and C. Tschierske: GISAXS in the study of supramolecular and hybrid liquid crystals. J. Phys.: Conf. Ser. 247, 012032 (2010).

    Google Scholar 

  44. M. Dante, J. Peet, and T-Q. Nguyen: Nanoscale charge transport and internal structure of bulk heterojunction conjugated polymer/fullerene solar cells by scanning probe microscopy. J. Phys. Chem. C 112(18), 7241 (2008).

    Article  CAS  Google Scholar 

  45. C.J. Tassone, A.L. Ayzner, R.D. Kennedy, M. Halim, M. So, Y. Rubin, S.H. Tolbert, and B.J. Schwartz: Using pentaarylfullerenes to understand network formation in conjugated polymer-based bulk-heterojunction solar cells. J. Phys. Chem. C 115(45), 22563 (2011).

    Article  CAS  Google Scholar 

  46. A.L. Ayzner, C.J. Tassone, S.H. Tolbert, and B.J. Schwartz: Reappraising the need for bulk heterojunctions in polymer–fullerene photovoltaics: The role of carrier transport in all-solution-processed P3HT/PCBM bilayer solar cells. J. Phys. Chem. C 113(46), 20050 (2009).

    Article  CAS  Google Scholar 

  47. A. Guinier: X-ray Diffraction: In Crystals, Imperfect Crystals, and Amorphous Bodies (Dover Publications, Mineola, 2013).

    Google Scholar 

  48. B. Weyerich, J. Brunner-Popela, and O. Glatter: Small-angle scattering of interacting particles. II. Generalized indirect Fourier transformation under consideration of the effective structure factor for polydisperse systems. J. Appl. Crystallogr. 32(2), 197 (1999).

    Article  CAS  Google Scholar 

  49. Y. Kim, S.A. Choulis, J. Nelson, D.D.C. Bradley, S. Cook, and J.R. Durrant: Composition and annealing effects in polythiophene/fullerene solar cells. J. Mater. Sci. 40(6), 1371 (2005).

    Article  CAS  Google Scholar 

  50. H. Hoppe and N.S. Sariciftci: Morphology of polymer/fullerene bulk heterojunction solar cells. J. Mater. Chem. 16(1), 45 (2006).

    Article  CAS  Google Scholar 

  51. V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, and Y. Yang: Accurate measurement and characterization of organic solar cells. Adv. Funct. Mater. 16(15), 2016 (2006).

    Article  CAS  Google Scholar 

  52. J. Fink, E. Schierle, E. Weschke, and J. Geck: Resonant elastic soft X-ray scattering. Rep. Prog. Phys. 76(5), 056502 (2013).

    Article  CAS  Google Scholar 

  53. S. Grenier and Y. Joly: Basics of resonant elastic X-ray scattering theory. J. Phys.: Conf. Ser. 519, 012001 (2014).

    Google Scholar 

  54. C. Vettier: Resonant elastic X-ray scattering: Where from? Where to?. Eur. Phys. J.: Spec. Top. 208(1), 3 (2012).

    CAS  Google Scholar 

  55. F. Liu, M.A. Brady, and C. Wang: Resonant soft X-ray scattering for polymer materials. Eur. Polym. J. 81, 555 (2016).

    Article  CAS  Google Scholar 

  56. C. Wang, D.H. Lee, A. Hexemer, M.I. Kim, W. Zhao, H. Hasegawa, H. Ade, and T.P. Russell: Defining the nanostructured morphology of triblock copolymers using resonant soft X-ray scattering. Nano Lett. 11(9), 3906 (2011).

    Article  CAS  Google Scholar 

  57. T. Araki, H. Ade, J.M. Stubbs, D.C. Sundberg, G.E. Mitchell, J.B. Kortright, and A.L.D. Kilcoyne: Resonant soft X-ray scattering from structured polymer nanoparticles. Appl. Phys. Lett. 89(12), 124106 (2006).

    Article  CAS  Google Scholar 

  58. B.A. Collins, J.E. Cochran, H. Yan, E. Gann, C. Hub, R. Fink, C. Wang, T. Schuettfort, C.R. McNeill, M.L. Chabinyc, and H. Ade: Polarized X-ray scattering reveals non-crystalline orientational ordering in organic films. Nat. Mater. 11(6), 536 (2012).

    Article  CAS  Google Scholar 

  59. J. Rivnay, M.F. Toney, Y. Zheng, I.V. Kauvar, Z. Chen, V. Wagner, A. Facchetti, and A. Salleo: Unconventional face-on texture and exceptional in-plane order of a high mobility n-type polymer. Adv. Mater. 22(39), 4359 (2010).

    Article  CAS  Google Scholar 

  60. A.L. Ayzner, S.C. Doan, B. Tremolet de Villers, and B.J. Schwartz: Ultrafast studies of exciton migration and polaron formation in sequentially solution-processed conjugated polymer/fullerene quasi-bilayer photovoltaics. J. Phys. Chem. Lett. 3(16), 2281 (2012).

    Article  CAS  Google Scholar 

  61. H.W. Ro, B. Akgun, B.T. O’Connor, M. Hammond, R.J. Kline, C.R. Snyder, S.K. Satija, A.L. Ayzner, M.F. Toney, C.L. Soles, and D.M. DeLongchamp: Poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester mixing in organic solar cells. Macromolecules 45(16), 6587 (2012).

    Article  CAS  Google Scholar 

  62. D. Chen, F. Liu, C. Wang, A. Nakahara, and T.P. Russell: Bulk heterojunction photovoltaic active layers via bilayer interdiffusion. Nano Lett. 11(5), 2071 (2011).

    Article  CAS  Google Scholar 

  63. Q. Yan, Y. Zhou, Y-Q. Zheng, J. Pei, and D. Zhao: Towards rational design of organic electron acceptors for photovoltaics: A study based on perylenediimide derivatives. Chem. Sci. 4(12), 4389 (2013).

    Article  CAS  Google Scholar 

  64. A. Sharenko, C.M. Proctor, T.S. van der Poll, Z.B. Henson, T-Q. Nguyen, and G.C. Bazan: A high-performing solution-processed small molecule:perylene diimide bulk heterojunction solar cell. Adv. Mater. 25(32), 4403 (2013).

    Article  CAS  Google Scholar 

  65. V. Kamm, G. Battagliarin, I.A. Howard, W. Pisula, A. Mavrinskiy, C. Li, K. Müllen, and F. Laquai: Polythiophene:perylene diimide solar cells—The impact of alkyl-substitution on the photovoltaic performance. Adv. Energy Mater. 1(2), 297 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

GIXD measurements were performed at the Stanford Synchrotron Radiation Laboratory, a national user facility operated by the U.S. Department of Energy, Office of Basic Energy Sciences; the authors would like to acknowledge Tim Dunn for his beamline support. We thank Stefan Mannsfeld (Dresden University of Technology, Germany) for providing software used to process GIXD images. GISAXS and REXS data were acquired at the Advanced Light Source at the Lawrence Berkeley National Laboratory also operated by the U.S. Department of Energy, Basic Sciences Division; the authors acknowledge Dr. Cheng Wang and Dr. Mike Brady for their beamline training and support. GISAXS data were calibrated and reduced using a MATLAB program written by Victoria Savikhin (Stanford University). Solvent-excluded volume and surface area calculations were performed by Cameron Pye (University of California, Santa Cruz) using Biovia’s Discovery Studio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander L. Ayzner.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roders, M., Duong, V.V. & Ayzner, A.L. Toward a better understanding of conjugated polymer blends with non-spherical small molecules: coupling of molecular structure to polymer chain microstructure. Journal of Materials Research 32, 1935–1945 (2017). https://doi.org/10.1557/jmr.2016.490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.490

Navigation