Skip to main content
Log in

Effect of bainite in microstructure on hydrogen diffusion and trapping behavior of ferritic steel used for sour service application

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To clarify the effect of bainite in microstructure on hydrogen diffusion and trapping behavior and susceptibility to hydrogen assisted cracking of API grade linepipe steel, three specimens with different fraction of bainite in the microstructure are used. Firstly, hydrogen diffusion and trapping behaviors of the steels are studied by utilizing the electrochemical permeation technique. For fundamental analysis on the experimental data, a variety of diffusion parameters were determined by curve-fitting with a theoretical diffusion equation based on numerical finite difference method (FDM). It indicates that the steel with higher fraction of bainite exhibits much higher sub-surface hydrogen concentration and much lower apparent hydrogen diffusivity. This behavior can be understood by the fact that the steel containing higher fraction of bainite in the microstructure has higher concentration of reversible traps and consequent larger diffusible hydrogen, leading to much slower diffusion kinetics of hydrogen atoms. Consequently, the susceptibility to hydrogen induced cracking (HIC) and sulfide stress cracking (SSC) of the steel with higher fraction of bainite increases significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. G.T. Park, S.U. Koh, H.G. Jung, and K.Y. Kim: Effect of microstructure on the hydrogen trapping efficiency and hydrogen induced cracking of linepipe steel. Corros. Sci. 50, 1865 (2008).

    Article  CAS  Google Scholar 

  2. J. Kittel, F. Ropital, and J. Pellier: New insights into hydrogen permeation in steels: Measurements through thick membranes. In Proc. NACE International Conference (NACE International, Houston, 2008).

    Google Scholar 

  3. C. Plennevaux, J. Kittel, M. Frégonèse, B. Normand, F. Ropital, F. Grosjean, and T. Cassagne: Contribution of CO2 on hydrogen evolution and hydrogen permeation in low alloy steels exposed to H2S environment. Electrochem. Commun. 26, 17 (2013).

    Article  CAS  Google Scholar 

  4. S.J. Kim, D.W. Yun, H.G. Jung, and K.Y. Kim: Numerical study on hydrogen permeation of ferritic steel evaluated under constant load. Mater. Sci. Technol. (2016), doi: 10.1080/02670836.2016.1162011.

  5. Y.D. Han, H.Y. Jing, and L.Y. Xu: Welding heat input effect on the hydrogen permeation in the X80 steel welded joints. Mater. Chem. Phys. 132, 216 (2012).

    Article  CAS  Google Scholar 

  6. S.J. Kim, H.G. Jung, and K.Y. Kim: Effect of tensile stress in elastic and plastic range on hydrogen permeation of high-strength steel in sour environment. Electrochim. Acta 78, 139 (2012).

    Article  CAS  Google Scholar 

  7. J. Kittel, F. Ropital, F. Grosjean, E.M.M. Sutter, and B. Tribollet: Corrosion mechanisms in aqueous solutions containing dissolved H2S. Part 1: Characterisation of H2S reduction on a 316L rotating disc electrode. Corros. Sci. 66, 324 (2013).

    Article  CAS  Google Scholar 

  8. S.J. Kim and K.Y. Kim: A review of corrosion and hydrogen diffusion behaviors of high strength pipe steel in sour environment. J. Weld. Join. 32(5), 13 (2013).

    Article  Google Scholar 

  9. A. Kawashima, K. Hashimoto, and S. Shimodaira: Hydrogen electrode reaction and hydrogen embrittlement of mild steel in hydrogen sulfide solutions. Corrosion 32, 321 (1976).

    Article  CAS  Google Scholar 

  10. ISO 17081: Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique. ISO, Switzerland, 2004.

    Google Scholar 

  11. K. Kiuchi and R.B. Mclellan: The solubility and diffusivity of hydrogen in well annealed and deformed iron. Acta Metall. 31, 961 (1983).

    Article  CAS  Google Scholar 

  12. Y. Huang, A. Nakajima, A. Nishikata, and T. Tsuru: Effect of mechanical deformation on permeation of hydrogen in iron. ISIJ Int. 43, 548 (2003).

    Article  CAS  Google Scholar 

  13. S.H. Wang, W.C. Luu, K.F. Ho, and J.K. Wu, Hydrogen permeation in a submerged arc weldment of TMCP steel. Mater. Chem. Phys. 77, 447 (2002).

    Article  Google Scholar 

  14. S.U. Koh, J.S. Kim, B.Y. Yang, and K.Y. Kim, Effect of line pipe steel microstructure on susceptibility to sulfide stress cracking. Corrosion 60, 244 (2004).

    Article  CAS  Google Scholar 

  15. S.U. Koh, J.M. Lee, B.Y. Yang, and K.Y. Kim: Effect of molybdenum and chromium addition on the susceptibility to sulfide stress cracking of high-strength, low-alloy steels. Corrosion 63, 220 (2007).

    Article  CAS  Google Scholar 

  16. H. Inagaki, M. Tanimura, I. Matsushima, and T. Nishimura: Effect of Cu on the hydrogen induced cracking of pipeline steel. ISIJ Int. 18, 149 (1978).

    Article  CAS  Google Scholar 

  17. R.A. Carneiro, R.C. Ratnapuli, and V.d.F.C. Lins: The influence of chemical composition and microstructure of API linepipe steels on hydrogen induced cracking and sulfide stress corrosion cracking. Mater. Sci. Eng., A 357, 104 (2003).

    Article  Google Scholar 

  18. S.J. Kim, H.G. Jung, and K.Y. Kim: Effect of microstructure on hydrogen induced cracking and sulfide stress cracking properties of pressure vessel steel in sour environment. In Proc. of NACE International Conference (NACE International, Salt Lake, 2012).

    Google Scholar 

  19. T. Diana, G. Kubla, and V. Rohden: API X70Q-X80Q heavy-wall seamless pipes for sour-service application. In Proc. of ISOPE Conference (ISOPE, Anchorage, 2013).

    Google Scholar 

  20. M.A.V. Devanathan and Z. Stachurski: The adsorption and diffusion of electrolytic hydrogen in palladium. Proc. R. Soc. 270, 90 (1962).

    CAS  Google Scholar 

  21. P. Castaño-Rivera, V.P. Ramunni, and P. Bruzzoni: Hydrogen trapping in an API 5L X60 steel. Corros. Sci. 54, 106 (2012).

    Article  Google Scholar 

  22. S.J. Kim, H.S. Seo, and K.Y. Kim, Validity of the critical thickness of steel for volume controlled diffusion during measurement of electrochemical hydrogen permeation. Met. Mater. Int. 21, 666 (2015).

    Article  CAS  Google Scholar 

  23. S.J. Kim and K.Y. Kim: Electrochemical hydrogen permeation measurement through high-strength steel under uniaxial tensile stress in plastic range. Scr. Mater. 66, 1069 (2012).

    Article  CAS  Google Scholar 

  24. NACE standard TM0284: Evaluation of Pipeline and Pressure Vessel Steels for Resistance to Hydrogen Induced Cracking (NACE International, Houston, Texas, 2005).

    Google Scholar 

  25. NACE standard TM0177: Laboratory Testing of Metals for Resistance to Sulfide Stress Cracking and Stress Corrosion Cracking in H2S Environments (NACE International, Houston, Texas, 2005).

    Google Scholar 

  26. JIS Standard Z3113: Method for Measurement of Hydrogen Evolved from Deposited Metal (Japanese Standard Association, Japan, 1975).

    Google Scholar 

  27. A. Turnbull, M.W. Carroll, and D.H. Ferriss: Analysis of hydrogen diffusion and trapping in a 13% chromium martensitic stainless steel. Acta Metall. 37, 2039 (1989).

    Article  CAS  Google Scholar 

  28. Y. Murakami, T. Kanezaki, Y. Mine, and S. Matsuoka: Hydrogen embrittlement mechanism in fatigue of austenitic stainless steels. Metall. Mater. Trans. A 39, 1327 (2008).

    Article  Google Scholar 

  29. G. Lovicu, M. Bottazzi, F. D’Aiuto, M. De Sanctis, A. Dimatteo, C. Santus, and R. Valentini: Hydrogen embrittlement of automotive advanced high-strength steels. Metall. Mater. Trans. A 43, 4075 (2012).

    Article  CAS  Google Scholar 

  30. J.H. Ryu, Y.S. Chun, C.S. Lee, H.K.D.H. Bhadeshia, and D.W. Suh: Effect of deformation on hydrogen trapping and effusion in TRIP-assisted steel. Acta Mater. 60, 4085 (2012).

    Article  CAS  Google Scholar 

  31. S.J. Kim, D.W. Yun, D.W. Suh, and K.Y. Kim: Electrochemical hydrogen permeation measurement through TRIP steel under loading condition of phase transition. Electrochem. Commun. 24, 112 (2012).

    Article  CAS  Google Scholar 

  32. J.L. Lee and J.Y. Lee: The interaction of hydrogen with the interface of AI2O3 particles in iron. Metall. Trans. A 17, 2183 (1986).

    Article  Google Scholar 

  33. H.G. Lee and J.Y. Lee: Hydrogen trapping by TiC particles in iron. Acta Metall. 32, 131 (1984).

    Article  CAS  Google Scholar 

  34. S.J. Kim, D.W. Yun, H.G. Jung, and K.Y. Kim: Determination of hydrogen diffusion parameters of ferritic steel from electrochemical permeation measurement under tensile loads. J. Electrochem. Soc. 161, E173 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This paper was supported by Sunchon National University Research Fund in 2016.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Min-suk Oh or Sung Jin Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J.H., Oh, Ms. & Kim, S.J. Effect of bainite in microstructure on hydrogen diffusion and trapping behavior of ferritic steel used for sour service application. Journal of Materials Research 32, 1295–1303 (2017). https://doi.org/10.1557/jmr.2016.480

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.480

Navigation