Abstract
Transition metal dichalcogenides such as WS2 show exciting promise in electronic and optoelectronic applications. Significant variations in the transport, Raman, and photoluminescence (PL) can be found in the literature, yet it is rarely addressed why this is. In this report, Raman and PL of monolayered WS2 produced via different methods are studied and distinct features that indicate the degree of crystallinity of the material are observed. While the intensity of the LA(M) Raman mode is found to be a useful indicator to assess the crystallinity, PL is drastically more sensitive to the quality of the material than Raman spectroscopy. We also show that even exfoliated crystals, which are usually regarded as the most pristine material, can contain large amounts of defects that would not be apparent without Raman and PL measurements. These findings can be applied to the understanding of other two-dimensional heterostructured systems.
Similar content being viewed by others
References
A.K. Geim and K.S. Novoselov: The rise of graphene. Nat. Mater. 6(3), 183 (2007).
K.K. Kim, A. Hsu, X. Jia, S.M. Kim, Y. Shi, M. Dresselhaus, T. Palacios, and J. Kong: Synthesis and characterization of hexagonal boron nitride film as a dielectric layer for graphene devices. ACS Nano 6(10), 8583 (2012).
C.R. Dean, A.F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K.L. Shepard, and J. Hone: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5(10), 722 (2010).
K.S. Novoselov and A.H. Castro Neto: Two-dimensional crystals-based heterostructures: Materials with tailored properties. Phys. Scr. T146, 014006 (2012).
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7(11), 699 (2012).
A. Berkdemir, H.R. Gutierrez, A.R. Botello-Mendez, N. Perea-Lopez, A.L. Elias, C-I. Chia, B. Wang, V.H. Crespi, F. Lopez-Urias, J-C. Charlier, H. Terrones, and M. Terrones: Identification of individual and few layers of WS2 using Raman spectroscopy. Sci. Rep. 3, 1755 (2013).
M. Chhowalla, H.S. Shin, G. Eda, L.J. Li, K.P. Loh, and H. Zhang: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263 (2013).
K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105(13), 136805 (2010).
O. Lopez-Sanchez, D. Lembke, M. Kayci, A. Radenovic, and A. Kis: Ultrasensitive photodetectors based on monolayer MoS2. Nat. Nanotechnol. 8(7), 497 (2013).
S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta, H.R. Gutierrez, T.F. Heinz, S.S. Hong, J. Huang, A.F. Ismach, E. Johnston-Halperin, M. Kuno, V.V. Plashnitsa, R.D. Robinson, R.S. Ruoff, S. Salahuddin, J. Shan, L. Shi, M.G. Spencer, M. Terrones, W. Windl, and J.E. Goldberger: Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7(4), 2898 (2013).
D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, and M.C. Hersam: Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8(2), 1102 (2014).
R. Ganatra and Q. Zhang: Few-layer MoS2: A promising layered semiconductor. ACS Nano 8(5), 4074 (2014).
H.R. Gutierrez, N. Perea-Lopez, A.L. Elias, A. Berkdemir, B. Wang, R. Lv, F. Lopez-Urias, V.H. Crespi, H. Terrones, and M. Terrones: Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 13(8), 3447 (2013).
A.L. Elias, N. Perea-Lopez, A. Castro-Beltran, A. Berkdemir, R.T. Lv, S.M. Feng, A.D. Long, T. Hayashi, Y.A. Kim, M. Endo, H.R. Gutierrez, N.R. Pradhan, L. Balicas, T.E.M. Houk, F. Lopez-Urias, H. Terrones, and M. Terrones: Controlled synthesis and transfer of large-area WS2 sheets: From single layer to few layers. ACS Nano 7(6), 5235 (2013).
C.M. Orofeo, S. Suzuki, Y. Sekine, and H. Hibino: Scalable synthesis of layer-controlled WS2 and MoS2 sheets by sulfurization of thin metal films. Appl. Phys. Lett. 105(8), 83112 (2014).
S. Jo, N. Ubrig, H. Berger, A.B. Kuzmenko, and A.F. Morpurgo: Mono- and bilayer WS2 light-emitting transistors. Nano Lett. 14(4), 2019 (2014).
Y. Zhang, Y. Zhang, Q. Ji, J. Ju, H. Yuan, J. Shi, T. Gao, D. Ma, M. Liu, Y. Chen, X. Song, H.Y. Hwang, Y. Cui, and Z. Liu: Controlled growth of high-quality monolayer WS2 layers on sapphire and imaging its grain boundary. ACS Nano 7(10), 8963 (2013).
Y. Rong, Y. Fan, A. Leen Koh, A.W. Robertson, K. He, S. Wang, H. Tan, R. Sinclair, and J.H. Warner: Controlling sulphur precursor addition for large single crystal domains of WS2. Nanoscale 6(20), 12096 (2014).
W. Zhao, Z. Ghorannevis, L. Chu, M. Toh, C. Kloc, P-H. Tan, and G. Eda: Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 7(1), 791 (2013).
A.A. Mitioglu, P. Plochocka, J.N. Jadczak, W. Escoffier, G.L.J.A. Rikken, L. Kulyuk, and D.K. Maude: Optical manipulation of the exciton charge state in single-layer tungsten disulfide. Phys. Rev. B 88(24), 245403 (2013).
H.L. Zeng, G.B. Liu, J.F. Dai, Y.J. Yan, B.R. Zhu, R.C. He, L. Xie, S.J. Xu, X.H. Chen, W. Yao, and X.D. Cui: Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 3, 1608 (2013).
K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102(30), 10451 (2005).
G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M.W. Chen, and M. Chhowalla: Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11(12), 5111 (2011).
J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331(6017), 568 (2011).
H.S.S.R. Matte, A. Gomathi, A.K. Manna, D.J. Late, R. Datta, S.K. Pati, and C.N.R. Rao: MoS2 and WS2 analogues of graphene. Angew. Chem., Int. Ed. 49(24), 4059 (2010).
R.F. Frindt: Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37(4), 1928 (1966).
P. Joensen, R.F. Frindt, and S.R. Morrison: Single layer MoS2. Mater. Res. Bull. 21(4), 457 (1986).
K. Golasa, M. Grzeszczyk, K.P. Korona, R. Bozek, J. Binder, J. Szczytko, A. Wysmolek, and A. Babinski: Optical properties of molybdenum disulfide (MoS2). Acta Phys. Pol., A 124(5), 849 (2013).
H. Schäfer, T. Grofe, and M. Trenkel: The chemical transport of molybdenum and tungsten and of their dioxides and sulfides. J. Solid State Chem. 8(1), 14 (1973).
R.M.A. Lieth: Preparation and Crystal Growth of Materials with Layered Structures, Vol. 1 (D. Reidel Pub. Co, Dordrecht, 1977).
V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, and J.N. Coleman: Liquid exfoliation of layered materials. Science 340(6139), 1420 (2013).
M.S. Dresselhaus and G. Dresselhaus: Intercalation compounds of graphite. Adv. Phys. 30(2), 139 (1981).
A.M. van der Zande, P.Y. Huang, D.A. Chenet, T.C. Berkelbach, Y.M. You, G.H. Lee, T.F. Heinz, D.R. Reichman, D.A. Muller, and J.C. Hone: Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12(6), 554 (2013).
J.C. Shaw, H. Zhou, Y. Chen, N.O. Weiss, Y. Liu, Y. Huang, and X. Duan: Chemical vapor deposition growth of monolayer MoSe2 nanosheets. Nano Res. 7(4), 511 (2014).
K. Kang, S. Xie, L. Huang, Y. Han, P.Y. Huang, K.F. Mak, C-J. Kim, D. Muller, and J. Park: High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520(7549), 656 (2015).
A. Splendiani, L. Sun, Y.B. Zhang, T.S. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang: Emerging photoluminescence in monolayer MoS2. Nano Lett. 10(4), 1271 (2010).
B.W.H. Baugher, H.O.H. Churchill, Y. Yang, and P. Jarillo-Herrero: Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett. 13(9), 4212 (2013).
H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, and A. Javey: High-performance single layered WSe2 p-FETs with chemically doped contacts. Nano Lett. 12(7), 3788 (2012).
M. Amani, M.L. Chin, A.G. Birdwell, T.P. O’Regan, S. Najmaei, Z. Liu, P.M. Ajayan, J. Lou, and M. Dubey: Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Appl. Phys. Lett. 102(19), 193107 (2013).
N. Perea-Lopez, A.L. Elias, A. Berkdemir, A. Castro-Beltran, H.R. Gutierrez, S. Feng, R. Lv, T. Hayashi, F. Lopez-Urias, S. Ghosh, B. Muchharla, S. Talapatra, H. Terrones, and M. Terrones: Photosensor device based on few-layered WS2 films. Adv. Funct. Mater. 23(44), 5511 (2013).
N. Perea-López, Z. Lin, N. Pradhan, A. Iñiguez-Rábago, A.L. Elías, A. McCreary, J. Lou, P.M. Ajayan, H. Terrones, L. Balicas, and M. Terrones: CVD-grown monolayered MoS2 as an effective photosensor operating at low-voltage. 2D Mater. 1(1), 011004 (2014).
C-C. Wu, D. Jariwala, V.K. Sangwan, T.J. Marks, M.C. Hersam, and L.J. Lauhon: Elucidating the photoresponse of ultrathin MoS2 field-effect transistors by scanning photocurrent microscopy. J. Phys. Chem. Lett. 4(15), 2508 (2013).
B.W.H. Baugher, H.O.H. Churchill, Y. Yang, and P. Jarillo-Herrero: Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9(4), 262 (2014).
L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, A.N. Grigorenko, A.K. Geim, C. Casiraghi, A.H. Castro Neto, and K.S. Novoselov: Strong light-matter interactions in heterostructures of atomically thin films. Science 340(6138), 1311 (2013).
Y.D. Ma, Y. Dai, M. Guo, C.W. Niu, J.B. Lu, and B.B. Huang: Electronic and magnetic properties of perfect, vacancy-doped, and nonmetal adsorbed MoSe2, MoTe2 and WS2 monolayers. Phys. Chem. Chem. Phys. 13(34), 15546 (2011).
Z. Zhang, X. Zou, V.H. Crespi, and B.I. Yakobson: Intrinsic magnetism of grain boundaries in two-dimensional metal dichalcogenides. ACS Nano 7(12), 10475 (2013).
K.F. Mak, K.L. He, J. Shan, and T.F. Heinz: Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7(8), 494 (2012).
K.F. Mak, K.L. McGill, J. Park, and P.L. McEuen: The valley Hall effect in MoS2 transistors. Science 344(6191), 1489 (2014).
Y. Hao, M.S. Bharathi, L. Wang, Y. Liu, H. Chen, S. Nie, X. Wang, H. Chou, C. Tan, B. Fallahazad, H. Ramanarayan, C.W. Magnuson, E. Tutuc, B.I. Yakobson, K.F. McCarty, Y-W. Zhang, P. Kim, J. Hone, L. Colombo, and R.S. Ruoff: The role of surface oxygen in the growth of large single-crystal graphene on copper. Science 342(6159), 720 (2013).
I. Vlassiouk, M. Regmi, P.F. Fulvio, S. Dai, P. Datskos, G. Eres, and S. Smirnov: Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene. ACS Nano 5(7), 6069 (2011).
J.D. Wood, S.W. Schmucker, A.S. Lyons, E. Pop, and J.W. Lyding: Effects of polycrystalline Cu substrate on graphene growth by chemical vapor deposition. Nano Lett. 11(11), 4547 (2011).
X. Li, W. Cai, L. Colombo, and R.S. Ruoff: Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano Lett. 9(12), 4268 (2009).
W.C. Shin, T. Yoon, J.H. Mun, T.Y. Kim, S-Y. Choi, T-S. Kim, and B.J. Cho: Doping suppression and mobility enhancement of graphene transistors fabricated using an adhesion promoting dry transfer process. Appl. Phys. Lett. 103(24), 243504 (2013).
C. Casiraghi, S. Pisana, K.S. Novoselov, A.K. Geim, and A.C. Ferrari: Raman fingerprint of charged impurities in graphene. Appl. Phys. Lett. 91(23), 233108 (2007).
C. Casiraghi: Probing disorder and charged impurities in graphene by Raman spectroscopy. Phys. Status Solidi RRL 3(6), 175 (2009).
Q. Ji, Y. Zhang, T. Gao, Y. Zhang, D. Ma, M. Liu, Y. Chen, X. Qiao, P-H. Tan, M. Kan, J. Feng, Q. Sun, and Z. Liu: Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett. 13(8), 3870 (2013).
M. Amani, M.L. Chin, A.M. Mazzoni, R.A. Burke, S. Najmaei, P.M. Ajayan, J. Lou, and M. Dubey: Growth-substrate induced performance degradation in chemically synthesized monolayer MoS2 field effect transistors. Appl. Phys. Lett. 104(20), 203506 (2014).
W. Zhou, X.L. Zou, S. Najmaei, Z. Liu, Y.M. Shi, J. Kong, J. Lou, P.M. Ajayan, B.I. Yakobson, and J.C. Idrobo: Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13(6), 2615 (2013).
A. Azizi, X. Zou, P. Ercuis, Z. Zhang, A.L. Elias, N. Perea-Lopez, M. Terrones, B.I. Yakobson, and N. Alem: Atomic-scale observation of grains and grain boundary in monolayers of WS2. Microsc. Microanal. 20(S3), 1084 (2014).
A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006).
H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, and D. Baillargeat: From bulk to monolayer MoS2: Evolution of raman scattering. Adv. Funct. Mat. 22(7), 1385 (2012).
C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, and S. Ryu: Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5), 2695 (2010).
Z.H. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen: Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2(11), 2301 (2008).
T.M.G. Mohiuddin, A. Lombardo, R.R. Nair, A. Bonetti, G. Savini, R. Jalil, N. Bonini, D.M. Basko, C. Galiotis, N. Marzari, K.S. Novoselov, A.K. Geim, and A.C. Ferrari: Uniaxial strain in graphene by raman spectroscopy: G peak splitting, Gruneisen parameters, and sample orientation. Phys. Rev. B 79(20), 205433 (2009).
C. Rice, R.J. Young, R. Zan, U. Bangert, D. Wolverson, T. Georgiou, R. Jalil, and K.S. Novoselov: Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B 87(8), 081307(R) (2013).
H.J. Conley, B. Wang, J.I. Ziegler, R.F. Haglund, Jr., S.T. Pantelides, and K.I. Bolotin: Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13(8), 3626 (2013).
S.B. Desai, G. Seol, J.S. Kang, H. Fang, C. Battaglia, R. Kapadia, J.W. Ager, J. Guo, and A. Javey: Strain-induced indirect to direct bandgap transition in multi layer WSe2. Nano Lett. 14(8), 4592 (2014).
A.C. Ferrari: Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143(1–2), 47 (2007).
A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha, U.V. Waghmare, K.S. Novoselov, H.R. Krishnamurthy, A.K. Geim, A.C. Ferrari, and A.K. Sood: Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3(4), 210 (2008).
K.F. Mak, K.L. He, C. Lee, G.H. Lee, J. Hone, T.F. Heinz, and J. Shan: Tightly bound trions in monolayer MoS2. Nat. Mater. 12(3), 207 (2013).
H. Terrones, E. Del Corro, S. Feng, J.M. Poumirol, D.R. Rhodes, D. Smirnov, N.R. Pradhan, Z. Lin, M.A.T. Nguyen, A.L. Elias, T.E.M. Mallouk, L. Balicas, M.A. Pimenta, and M. Terrones: New first order Raman-active modes in few layered transition metal dichalcogenides. Sci. Rep. 4, 4215 (2014).
S. Mignuzzi, A.J. Pollard, N. Bonini, B. Brennan, I.S. Gilmore, M.A. Pimenta, D. Richards, and D. Roy: Effects of disorder on Raman scattering of single-layer MoS2. Phys. Rev. B 91(19), 195411 (2015).
A. Pisoni, J. Jacimovic, O.S. Barisic, A. Walter, B. Nafradi, P. Bugnon, A. Magrez, H. Berger, Z. Revay, and L. Forro: The role of transport agents in MoS2 single crystals. J. Phys. Chem. C 119(8), 3918 (2015).
J.B. Legma, G. Vacquier, and A. Casalot: Chemical-vapor transport of molybdenum and tungsten diselenides by various transport agents. J. Crystal Growth 130(1–2), 253 (1993).
N. Peimyoo, J. Shang, C. Cong, X. Shen, X. Wu, E.K.L. Yeow, and T. Yu: Nonblinking, intense two-dimensional light emitter: Mono layer WS2 triangles. ACS Nano 7(12), 10985 (2013).
S. Mouri, Y. Miyauchi, and K. Matsuda: Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 13(12), 5944 (2013).
D. Sercombe, S. Schwarz, O. Del Pozo-Zamudio, F. Liu, B.J. Robinson, E.A. Chekhovich, I.I. Tartakovskii, O. Kolosov, and A.I. Tartakovskii: Optical investigation of the natural electron doping in thin MoS2 films deposited on dielectric substrates. Sci. Rep. 3, 3489 (2013).
S. Najmaei, Z. Liu, W. Zhou, X.L. Zou, G. Shi, S.D. Lei, B.I. Yakobson, J.C. Idrobo, P.M. Ajayan, and J. Lou: Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat. Mater. 12(8), 754 (2013).
A.M. Jones, H. Yu, J.S. Ross, P. Klement, N.J. Ghimire, J. Yan, D.G. Mandrus, W. Yao, and X. Xu: Spin-layer locking effects in optical orientation of exciton spin in bilayer WSe2. Nat. Phys. 10(2), 130 (2014).
J.S. Ross, S.F. Wu, H.Y. Yu, N.J. Ghimire, A.M. Jones, G. Aivazian, J.Q. Yan, D.G. Mandrus, D. Xiao, W. Yao, and X.D. Xu: Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1474 (2013).
J.D. Lin, C. Han, F. Wang, R. Wang, D. Xiang, S. Qin, X-A. Zhang, L. Wang, H. Zhang, A.T.S. Wee, and W. Chen: Electron-Doping-enhanced trion formation in mono layer molybdenum disulfide functionalized with cesium carbonate. ACS Nano 8(5), 5323 (2014).
S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J.S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, F. Ogletree, J. Li, J.C. Grossman, and J. Wu: Defects activated photoluminescence in two-dimensional semiconductors: Interplay between bound, charged, and free excitons. Sci. Rep. 3, 2657 (2013).
P.K. Chow, R.B. Jacobs-Gedrim, J. Gao, T-M. Lu, B. Yu, H. Terrones, and N. Koratkar: Defect-induced photoluminescence in mono layer semiconducting transition metal dichalcogenides. ACS Nano 9(2), 1520 (2015).
G.R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M.S. Strano, V.R. Cooper, L. Liang, S.G. Louie, E. Ringe, W. Zhou, S.S. Kim, R.R. Naik, B.G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J.A. Schuller, R.E. Schaak, M. Terrones, and J. Robinson: Recent advances in two-dimensional materials beyond graphene. ACS Nano 9(12), 11509 (2015).
Y. Gong, Z. Liu, A.R. Lupini, G. Shi, J. Lin, S. Najmaei, Z. Lin, A.L. Elias, A. Berkdemir, G. You, H. Terrones, M. Terrones, R. Vajtai, S.T. Pantelides, S.J. Pennycook, J. Lou, W. Zhou, and P.M. Ajayan: Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett. 14(2), 442 (2014).
Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei, Z. Lin, X. Zou, G. Ye, R. Vajtai, B.I. Yakobson, H. Terrones, M. Terrones, B.K. Tay, J. Lou, S.T. Pantelides, Z. Liu, W. Zhou, and P.M. Ajayan: Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13(12), 1135 (2014).
S. Das, J.A. Robinson, M. Dubey, H. Terrones, and M. Terrones: Beyond graphene: Progress in novel two-dimensional materials and van der waals solids. Annu. Rev. Mater. Res. 45, 1 (2015).
R. Lv, J.A. Robinson, R.E. Schaak, D. Sun, Y.F. Sun, T.E. Mallouk, and M. Terrones: Transition metal dichalcogenides and beyond: Synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48(1), 56 (2015).
H. Terrones, F. Lopez-Urias, and M. Terrones: Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides. Sci. Rep. 3, 1549 (2013).
F. Ceballos, M.Z. Bellus, H-Y. Chiu, and H. Zhao: Ultrafast charge separation and indirect exciton formation in a MoS2-MoSe2 van der Waals heterostructure. ACS Nano 8(12), 12717 (2014).
M.Z. Bellus, F. Ceballos, H-Y. Chiu, and H. Zhao: Tightly bound trions in transition metal dichalcogenide heterostructures. ACS Nano 9(6), 6459 (2015).
A.K. Geim and I.V. Grigorieval: van der Waals heterostructures. Nature 499(7459), 419 (2013).
C.H. Lui, Z. Ye, C. Ji, K-C. Chiu, C-T. Chou, T.I. Andersen, C. Means-Shively, H. Anderson, J-M. Wu, T. Kidd, Y-H. Lee, and R. He: Observation of interlayer phonon modes in van der Waals heterostructures. Phys. Rev. B 91(16), 165403 (2015).
N. Huo, Z. Wei, X. Meng, J. Kang, F. Wu, S-S. Li, S-H. Wei, and J. Li: Interlayer coupling and optoelectronic properties of ultrathin two-dimensional heterostructures based on graphene, MoS2 and WS2. J. Mater. Chem. C 3(21), 5467 (2015).
N. Huo, S. Tongay, W. Guo, R. Li, C. Fan, F. Lu, J. Yang, B. Li, Y. Li, and Z. Wei: Novel optical and electrical transport properties in atomically thin WSe2/MoS2 p-n heterostructures. Adv. Electron. Mater. 1(5), 1400066 (2015).
ACKNOWLEDGMENT
A.M., M.A.N., A.L.E., N.P.L, T.E.M., and M.T. acknowledge the financial support from the U.S. Army Research Office under the MURI ALNOS project No. W911NF-11-1-0362. J.W., J.Z., and M.T. were supported by the Center for Nanoscale Science, an NSF Materials Research Science and Engineering Center, under the award DMR-1420620. A.L.E. acknowledges the support from the National Science Foundation (EFRI-1433311). D.A.C. acknowledges funding through a user project supported by ORNL’s Center for Nanophase Materials Science (CNMS) which is a Department of Energy, Office of Science User Facility. V.C. acknowledges support from The Brazilian National Council for Scientific and Technological Development (CNPq) — (249070/2013-8).
Author information
Authors and Affiliations
Corresponding author
Additional information
This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.
Supplementary Material
Rights and permissions
About this article
Cite this article
McCreary, A., Berkdemir, A., Wang, J. et al. Distinct photoluminescence and Raman spectroscopy signatures for identifying highly crystalline WS2 monolayers produced by different growth methods. Journal of Materials Research 31, 931–944 (2016). https://doi.org/10.1557/jmr.2016.47
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2016.47