Skip to main content
Log in

Phase constituents and growth mechanism of laser in situ synthesized WC reinforced composite coating with W–C–Ni system

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The in situ synthesis of nickel-based composite coating reinforced with WC particle on mild steel has been investigated. Results show a planar crystal at the interface and some relatively coarse columnar dendrites on the side of the coating near the substrate. The synthesized WC particles homogenously distribute in the coating without cracks and pores. The maximum size, mean size, and volume fraction of the WC particle is 270 µm, 35 µm, and 71%, respectively. The microhardness value of the prepared coating can be up to a maximum of 755 HV2. The synthesized WC particles generally show a unique triangular prism shape, whose evolution rule and growth mechanism are investigated by Bravais–Friedel–Donnay–Harker theory. It is deduced that crystal structure and interface energy play important role in determining the shape of WC, which evolves from sphere to hexagonal prism and finally to triangular prism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. G.S. Upadhyaya: Cemented Tungsten Carbides: Production, Properties and Testing (William Andrew, Norwich, NY, 1998).

    Google Scholar 

  2. Y.L. Yuan and Z.G. Li: Microstructure and dry sliding wear behavior of Fe-based (Cr,Fe)7C3 composite coating fabricated by PTA welding process. J. Mater. Eng. Perform. 22 (11), 3439 (2013).

    Article  CAS  Google Scholar 

  3. D. Lou, J. Hellman, D. Luhulima, J. Liimatainen, and V.K. Lindroos: Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites. Mater. Sci. Eng., A 340 (1), 155 (2003).

    Article  Google Scholar 

  4. D. Gu and W. Meiners: Microstructure characteristics and formation mechanisms of in situ WC cemented carbide based hardmetals prepared by selective laser melting. Mater. Sci. Eng., A 527 (29–30), 7585 (2010).

    Article  Google Scholar 

  5. G-f. Sun, Y-k. Zhang, C-s. Liu, K-y. Luo, X-q. Tao, and P. Li: Microstructure and wear resistance enhancement of cast steel rolls by laser surface alloying NiCr–Cr3C2. Mater. Des. 31 (6), 2737 (2010).

    Article  CAS  Google Scholar 

  6. H. Wang, H. Wang, Q. Chang, and H. Wang: Microstructure and thermal physical parameters of Ni60-Cr3C2 composite coating by laser cladding. J. Wuhan Univ. Technol., Mater. Sci. Ed. 25 (6), 991 (2010).

    Article  Google Scholar 

  7. M-S. Yang, X-B. Liu, J-W. Fan, X-M. He, S-H. Shi, G-Y. Fu, M-D. Wang, and S-F. Chen: Microstructure and wear behaviors of laser clad NiCr/Cr3C2–WS2 high temperature self-lubricating wear-resistant composite coating. Appl. Surf. Sci. 258 (8), 3757 (2012).

    Article  CAS  Google Scholar 

  8. D. Zhang and X. Zhang: Laser cladding of stainless steel with Ni–Cr3C2 and Ni–WC for improving erosive–corrosive wear performance. Surf. Coat. Technol. 190 (2), 212 (2005).

    Article  CAS  Google Scholar 

  9. S. Hong, Y. Wu, G. Li, B. Wang, W. Gao, and G. Ying: Microstructural characteristics of high-velocity oxygen-fuel (HVOF) sprayed nickel-based alloy coating. J. Alloys Compd. 581, 398 (2013).

    Article  CAS  Google Scholar 

  10. G. Bolelli, L-M. Berger, M. Bonetti, and L. Lusvarghi: Comparative study of the dry sliding wear behaviour of HVOF-sprayed WC–(W,Cr)2C–Ni and WC–CoCr hardmetal coatings. Wear 309 (1), 96 (2014).

    Article  CAS  Google Scholar 

  11. M.A. Zavareh, A.A.D.M. Sarhan, B.B.A. Razak, and W.J. Basirun: Plasma thermal spray of ceramic oxide coating on carbon steel with enhanced wear and corrosion resistance for oil and gas applications. Ceram. Int. 40 (9), 14267 (2014).

    Article  CAS  Google Scholar 

  12. S.M. Forghani, M.J. Ghazali, A. Muchtar, A.R. Daud, N.H.N. Yusoff, and C.H. Azhari: Effects of plasma spray parameters on TiO2-coated mild steel using design of experiment (DoE) approach. Ceram. Int. 39 (3), 3121 (2013).

    Article  CAS  Google Scholar 

  13. R. Veinthal, F. Sergejev, A. Zikin, R. Tarbe, and J. Hornung: Abrasive impact wear and surface fatigue wear behaviour of Fe–Cr–C PTA overlays. Wear 301 (1), 102 (2013).

    Article  CAS  Google Scholar 

  14. D. Gu, Q. Jia, and A. Bandyopadhyay: Novel crystal growth of in situWC in selective laser-melted W–C–Ni ternary system. J. Am. Ceram. Soc. 97 (3), 684 (2014).

    Article  CAS  Google Scholar 

  15. M.M. Savalani, C.C. Ng, Q.H. Li, and H.C. Man: In situ formation of titanium carbide using titanium and carbon-nanotube powders by laser cladding. Appl. Surf. Sci. 258 (7), 3173 (2012).

    Article  CAS  Google Scholar 

  16. S. Jin, P. Shen, Q. Lin, L. Zhan, and Q. Jiang: Growth mechanism of TiCx during self-propagating high-temperature synthesis in an Al−Ti−C system. Cryst. Growth Des. 10 (4), 1590 (2010).

    Article  CAS  Google Scholar 

  17. Q. Li, Y. Lei, and H. Fu: Growth characteristics and reinforcing behavior of in situ NbCp in laser cladded Fe-based composite coating. J. Mater. Sci. Technol. 31 (7), 766 (2015).

    Article  CAS  Google Scholar 

  18. A.K. De, D.C. Murdock, M.C. Mataya, J.G. Speer, and D.K. Matlock: Quantitative measurement of deformation-induced martensite in 304 stainless steel by x-ray diffraction. Scr. Mater. 50 (12), 1445 (2004).

    Article  CAS  Google Scholar 

  19. Y. Zhou and G.H. Wu: Analysis Methods in Materials Science—X-ray Diffraction and Electron Microscopy in Materials Science (Harbin Institute of Technology Press, Harbin, 2007).

    Google Scholar 

  20. S. Zhou and X. Zeng: Growth characteristics and mechanism of carbides precipitated in WC–Fe composite coatings by laser induction hybrid rapid cladding. J. Alloys Compd. 505 (2), 685 (2010).

    Article  CAS  Google Scholar 

  21. M. Zhong, W. Liu, Y. Zhang, and X. Zhu: Formation of WC/Ni hard alloy coating by laser cladding of W/C/Ni pure element powder blend. Int. J. Refract. Met. Hard Mater. 24 (6), 453 (2006).

    Article  CAS  Google Scholar 

  22. G. Wulff: Xxv. zur frage der geschwindigkeit des wachsthums und der auflösung der krystallflächen. Zeitschrift für Kristallographie-Crystalline Materials 34 (1), 449 (1901).

    CAS  Google Scholar 

  23. J. Prywer: Explanation of some peculiarities of crystal morphology deduced from the BFDH law. J. Cryst. Growth 270 (3–4), 699 (2004).

    Article  CAS  Google Scholar 

  24. J.W. Mullin: Crystallization (Butterworth-Heinemann, Amsterdam, 2001).

    Google Scholar 

  25. J.D.H. Donnay and D. Harker: A new law of crystal morphology extending the law of Bravais. Am. Mineral. 22 (5), 446 (1937).

    CAS  Google Scholar 

  26. P. Hartman and W.G. Perdok: On the relations between structure and morphology of crystals. I. Acta Crystallogr. 8 (1), 49 (1955).

    Article  CAS  Google Scholar 

  27. J. Prywer: Theoretical analysis of changes in habit of growing crystals in response to variable growth rates of individual faces. J. Cryst. Growth 197 (1), 271 (1999).

    Article  CAS  Google Scholar 

  28. M. Christensen, G. Wahnstrom, S. Lay, and C. Allibert: Morphology of WC grains in WC–Co alloys: Theoretical determination of grain shape. Acta Mater. 55 (5), 1515 (2007).

    Article  CAS  Google Scholar 

  29. M. Christensen, G. Wahnström, C. Allibert, and S. Lay: Quantitative analysis of WC grain shape in sintered WC-Co cemented carbides. Phys. Rev. Lett. 94 (6), 066105–1 (2005).

    Article  Google Scholar 

  30. J. Vicens, E. Laurent-Pinson, J.L. Chermant, and G. Nouet: Structural analysis and properties of grain boundaries in hexagonal carbides. J. Phys. Colloq. 49 (C5), C5 (1988).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is financially supported by the National Natural Science Foundation of China (Grant No. 51171116), the Shuguang Project of Shanghai Municipal Education Committee (Grant No. 12SG15). The authors are also thanks the financial support from the Nature Science Foundation of Anhui Province (Grant No. TSKJ2015B02), the open fund of national precision engineering technology research center of small and special electric machine (Grant No. 3651HT001), and the open fund of key laboratory of advanced manufacturing technology, ministry of education (Grant No. XDSYS2016001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuguo Li or Dayong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, D., Li, Z., Zhang, K. et al. Phase constituents and growth mechanism of laser in situ synthesized WC reinforced composite coating with W–C–Ni system. Journal of Materials Research 32, 557–565 (2017). https://doi.org/10.1557/jmr.2016.469

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.469

Navigation