Skip to main content
Log in

Analysis of strength and ductility of bulk nanostructured Cu and Cu–Al alloys by means of computer modeling

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The deformation mechanisms responsible for the strength and ductility of nanostructured Cu and Cu–Al alloys processed by high pressure torsion have been analyzed in frames of a model of elastic–plastic medium and using the available experimental data. The income of the Peierls strength, as well as solid solution hardening, dislocation hardening, twinning hardening, taking into account possible annihilation processes has been estimated. It was shown that in the Cu–5 at.% Al alloy annihilation processes contribute to the maintenance of deformation. The material is hardened by the accumulation of dislocations at the twin boundaries, postponing the moment of reaching the ultimate strength. In the Cu–16 at.% Al alloy processes of the annihilation are limited. As a result, the possibility of further deformation is limited and the degree of homogeneous deformation decreases in comparison with the case of the Cu–5 at.% Al alloy. Significantly increased concentration of deformation vacancies contributes to the destruction of the former alloy as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. R.Z. Valiev and I.V. Alexandrov: Nanostructured Materials, Obtained by the Severe Plastic Deformation (Publishing Corporation Logos, Moscow, 2000); p. 19.

    Google Scholar 

  2. M.J. Zehetbauer, H.P. Stüwe, A. Vorhauer, E. Schafler, and J. Kohout: The role of hydrostatic pressure in severe plastic deformation. Adv. Eng. Mater. 5, 330 (2003).

    Article  CAS  Google Scholar 

  3. R.Z. Valiev and I.V. Alexandrov: The Bulk Nanostructured Metallic Materials (Academkniga, Moscow, 2007); p. 93.

    Google Scholar 

  4. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).

    Article  CAS  Google Scholar 

  5. I.V. Alexandrov and R.G. Chembarisova: The analysis of SPD paradox by computer modeling technique. Mater. Sci. Forum 633–634, 231 (2010).

    Google Scholar 

  6. A.R. Rohatgi, K.S. Vecchio, and G.T. Cray, III: The influence of stacking fault energy on the mechanical behavior of Cu, Cu–Al alloys: Deformation twinning, work hardening, and dynamic recovery. Metall. Mater. Trans. A 32A, 135 (2001).

    Article  CAS  Google Scholar 

  7. S.K. Varma, V. Caballero, J. Ponce, A. De La Cruz, and D. Salas: The effect of stacking fault energy on the microstructural development during room temperature wire drawing in Cu, Al and their dilute alloys. J. Mater. Sci. 31, 5623 (1996).

    Article  CAS  Google Scholar 

  8. Y.Z. Tian, L.J. Zhao, S. Chen, A. Shibata, Z.F. Zhang, and N. Tsuji: Significant contribution of stacking faults to the strain hardening behavior of Cu–15% Al alloy with different grain sizes. Sci. Rep. 5, 16707 (2015).

    Article  CAS  Google Scholar 

  9. L. Velasco, M.N. Polyakov, and A.M. Hodge: Influence of stacking fault energy on twin spacing of Cu and Cu–Al alloys. Scr. Mater. 83, 33 (2014).

    Article  CAS  Google Scholar 

  10. Y. Zhang, N.R. Tao, and K. Lu: Effect of stacking fault energy on deformation twin thickness in Cu–Al alloys. Scr. Mater. 60, 211 (2009).

    Article  CAS  Google Scholar 

  11. P. Xue, B.L. Xiao, and Z.Y. Ma: Enhanced strength and ductility of friction stir processed Cu–Al alloys with abundant twin boundaries. Scr. Mater. 68, 751 (2013).

    Article  CAS  Google Scholar 

  12. X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: The influence of stacking fault energy on the mechanical properties of nanostructured Cu and Cu–Al alloys processed by high-pressure torsion. Scr. Mater. 64, 954 (2011).

    Article  CAS  Google Scholar 

  13. X.N. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Enhanced strength-ductility synergy in nanostructured Cu and Cu–Al alloys processed by high-pressure torsion and subsequent annealing. Scr. Mater. 66, 227 (2012).

    Article  CAS  Google Scholar 

  14. W. Wei, S.L. Wang, K.X. Wei, I.V. Alexandrov, Q.B. Du, and J. Hu: Microstructure and tensile properties of Cu–Al alloys processed by ECAP and rolling at cryogenic temperature. J. Alloys Compd. 678, 506 (2016).

    Article  CAS  Google Scholar 

  15. X. An, Q. Lin, S. Qu, G. Yang, S. Wu, and Z-F. Zhang: Influence of stacking-fault energy on the accommodation of severe shear strain in Cu–Al alloys during equal-channel angular pressing. J. Mater. Res. 24, 3636 (2009).

    Article  CAS  Google Scholar 

  16. X.H. An, Q.Y. Lin, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Significance of stacking fault energy on microstructural evolution in Cu and Cu–Al alloys processed by high-pressure torsion. Philos. Mag. 91, 3307 (2011).

    Article  CAS  Google Scholar 

  17. X.H. An, S. Qu, S.D. Wu, and Z.F. Zhang: Effects of stacking fault energy on the thermal stability and mechanical properties of nanostructured Cu–Al alloys during thermal annealing. J. Mater. Res. 26, 407 (2011).

    Article  CAS  Google Scholar 

  18. X.H. An, S.D. Wu, Z.G. Wang, and Z.F. Zhang: Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu–Al alloys. Act. Mater. 74, 200 (2014).

    Article  CAS  Google Scholar 

  19. X. An, Q. Lin, S. Wu, and Z. Zhang: Improved fatigue strengths of nanocrystalline Cu and Cu–Al alloys. Mater. Res. Lett. 3, 135 (2015).

    Article  CAS  Google Scholar 

  20. M.A. Stremel: Strength of the Alloys. Part II. Deformation, Textbook for Universities (MISIS, Moscow, 1997); p. 527.

    Google Scholar 

  21. X.H. An, W.Z. Han, C.X. Huang, P. Zhang, G. Yang, S.D. Wu, and Z.F. Zhang: High strength and utilizable ductility of bulk ultrafine-grained Cu–Al alloys. Appl. Phys. Lett. 92, 201915 (2008).

    Article  Google Scholar 

  22. S. Qu, X.H. An, H.J. Yang, C.X. Huang, G. Yang, Q.S. Zang, Z.G. Wang, S.D. Wu, and Z.F. Zhang: Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater. 57, 1586 (2009).

    Article  CAS  Google Scholar 

  23. Y.H. Zhao, X.Z. Liao, Z. Horita, T.G. Langdon, and Y.T. Zhu: Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu–Zn alloys. Mater. Sci. Eng., A 493, 123 (2008).

    Article  Google Scholar 

  24. Y. Estrin, L.S. Tóth, A. Molinari, and Y. Bréchet: A dislocation-based model for all hardening stages in large strain deformation. Acta Mater. 46, 5509 (1998).

    Article  CAS  Google Scholar 

  25. M. Zehetbauer: Cold work hardening in stages IV and V of fcc metals II: Model fits and physical results. Acta Mater. 41, 589 (1993).

    Article  CAS  Google Scholar 

  26. G.A. Malygin: Plasticity and strength of micro- and nanocrystalline materials (Review). Phys. Solid State 49, 1013 (2007).

    Article  CAS  Google Scholar 

  27. R.G. Chembarisova and I.V. Alexandrov: Modelling of elastic-plastic behavior of Ti Grade—4 in the process of ECAP—K. Phys. Metall. Heat Treat. Met. 4, 50 (2016).

    Google Scholar 

  28. R.G. Chembarisova: Elastic-plastic behavior of Cu during high-speed deformation. Phys. Met. Metall. 116, 627 (2015).

    Article  CAS  Google Scholar 

  29. R.G. Chembarisova and I.V. Alexandrov: Influence of grain boundary segregation, deformation temperature on strength in ultrafine-grained Al and Ti alloys. Rev. Adv. Mater. Sci. 43, 1 (2015).

    CAS  Google Scholar 

  30. V.A. Alexeyev, ed.: Structure and Mechanical Properties of Metals (Metallurgy, Moscow, 1967); p. 384.

    Google Scholar 

  31. L. Remy: Kinetics of F.C.C. deformation twinning and its relationship to stress-strain behaviour. Acta Metall. 26, 443 (1978).

    Article  CAS  Google Scholar 

  32. D.H. Ahn, H.S. Kim, and Y. Estrin: A semi-phenomenological constitutive model for hcp materials as exemplified by alpha titanium. Scr. Mater. 67, 121 (2012).

    Article  CAS  Google Scholar 

  33. J. Gilman: Dislocation dynamics and the response of materials. J. Appl. Mech. Rev. 21, 767 (1968).

    Google Scholar 

  34. J. Friedel: Dislocations, trans. A.L. Roitburd (Mir Publishers, Moscow, 1967); p. 643.

    Google Scholar 

  35. V.S. Krasnikov, A. Yu. Kuksin, A.E. Mayer, and A. Yanilkin: Plastic deformation during high-speed loading of aluminium: Multi-scale approach. Phys. Solid State 52, 1295 (2010).

    Article  Google Scholar 

  36. D.L. Holt: Dislocation cell formation in metals. J. Appl. Phys. 41, 3197 (1970).

    Article  Google Scholar 

  37. E. Schafler, A. Dubravina, and Z. Kovacs: Defect characterization of equal channel angular pressed Cu by selective annealing treatment. In Ultrafine Grained Materials II, Y.T. Zhu, T.G. Langdon, R.S. Mishra, S.L. Semiatin, M.J. Saran, and T.C. Lowe, eds. (The Minerals & Materials Society, Warrendale, 2002); p. 605.

    Google Scholar 

  38. S. Han, L. Zhao, Q. Jiang, and J.S. Lian: Deformation-induced localized solid-state amorphization in nanocrystalline nickel. Sci. Rep. 2, 493 (2012).

    Article  Google Scholar 

  39. I. Szlufarska, A. Nakano, and P. Vashishta: A cross over in mechanical response of nanocrystalline ceramics. Science 309, 911 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful for the support to Natural Science Foundation of Jiangsu Province, P. R. China under grant BK20131144, the Science Project of Changzhou, P. R. China under grant CZ20130021, the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) under grant no. [2014] 9, and to the Ministry of Education and Science of the Russian Federation within the Framework of the Basic and Design Part of the State Task No. 11.2540.2014/K Educational Organization of Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Igor V. Alexandrov or Wei Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, I.V., Chembarisova, R.G., Zainullina, L.I. et al. Analysis of strength and ductility of bulk nanostructured Cu and Cu–Al alloys by means of computer modeling. Journal of Materials Research 31, 3850–3859 (2016). https://doi.org/10.1557/jmr.2016.451

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.451

Navigation