Skip to main content
Log in

Comparison of convergent beam electron diffraction and annular bright field atomic imaging for GaN polarity determination

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A comparison of two electron microscopy techniques used to determine the polarity of GaN nanowires is presented. The techniques are convergent beam electron diffraction (CBED) in TEM mode and annular bright field (ABF) imaging in aberration corrected STEM mode. Both measurements were made at nominally the same locations on a variety of GaN nanowires. In all cases the two techniques gave the same polarity result. An important aspect of the study was the calibration of the CBED pattern rotation relative to the TEM image. Three different microscopes were used for CBED measurements. For all three instruments there was a substantial rotation of the diffraction pattern (120 or 180°) relative to the image, which, if unaccounted for, would have resulted in incorrect polarity determination. The study also shows that structural defects such as inversion domains can be readily identified by ABF imaging, but may escape identification by CBED. The relative advantages of the two techniques are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. M. Seelmann-Eggebert, J.L. Weyher, H. Obloh, H. Zimmermann, A. Rar, and S. Porowski: Polarity of (00.1) GaN epilayers grown on a (00.1) sapphire. Appl. Phys. Lett. 71 (18), 2635–2637 (1997).

    Article  CAS  Google Scholar 

  2. D. Li, M. Sumiya, K. Yoshimura, Y. Suzuki, Y. Fukuda, and S. Fuke: Characteristics of the GaN polar surface during an etching process in KOH solution. Phys. Status Solidi A 180, 357–362 (2000).

    Article  CAS  Google Scholar 

  3. K. Hestroffer, C. Leclere, C. Bougerol, H. Renevier, and B. Daudin: Polarity of GaN nanowires grown by plasma-assisted molecular beam epitaxy on Si(111). Phys. Rev. B: Condens. Matter Mater. Phys. 84, 245302 (2011).

    Article  Google Scholar 

  4. M. Sumiya, M. Tanaka, K. Ohtsuka, S. Fuke, T. Ohnishi, I. Ohkubo, M. Yoshimoto, H. Koinuma, and M. Kawasaki: Analysis of the polar direction of GaN film growth by coaxial impact collision ion scattering spectroscopy. Appl. Phys. Lett. 75, 674–676 (1999).

    Article  CAS  Google Scholar 

  5. T. Auzelle, B. Haas, A. Minj, C. Bougerol, J-L. Rouvière, A. Cros, J. Colchero, and B. Daudin: The influence of AlN buffer over the polarity and the nucleation of self-organized GaN nanowires. J. Appl. Phys. 117 (24), 245303 (2015).

    Article  Google Scholar 

  6. M.D. Brubaker, A. Roshko, P.T. Blanchard, T.E. Harvey, N.A. Sanford, and K.A. Bertness: Spontaneous growth of GaN nanowire nuclei on N- and Al-polar AlN: A piezoresponse force microscopy study of crystallographic polarity. Mater. Sci. Semicond. Process. 55 (15), 67–71 (2016).

    Article  CAS  Google Scholar 

  7. F. Furtmayr, M. Vielemeyer, M. Stutzmann, J. Arbiol, S. Estradé, F. Peirò, J.R. Morante, and M. Eickhoff: Nucleation and growth of GaN nanorods on Si(111) surfaces by plasma-assisted molecular beam epitaxy—the influence of Si- and Mg-doping. J. Appl. Phys. 104, 034309 (2008).

    Article  Google Scholar 

  8. D. Cherns, L. Meshi, I. Griffiths, S. Khongphetsak, S.V. Novikov, N. Farley, R.P. Campion, and C.T. Foxon: Defect reduction in GaN/(0001)sapphire films grown by molecular beam epitaxy using nanocolumn intermediate layers. Appl. Phys. Lett. 92, 121902 (2008).

    Article  Google Scholar 

  9. C. Chèze, L. Geelhaar, O. Brandt, W.M. Weber, H. Riechert, S. Münch, R. Rothemund, S. Reitzenstein, A. Forchel, T. Kehagias, P. Komninou, G.P. Dimitrakopulos, and T. Karakostas: Direct comparison of catalyst-free and catalyst-induced GaN nanowires. Nano Res. 3, 528–536 (2010).

    Article  Google Scholar 

  10. M.D. Brubaker, I. Levin, A.V. Davydov, D.M. Rourke, N.A. Sanford, V.M. Bright, and K.A. Bertness: Effect of AlN buffer layer properties on the morphology and polarity of GaN nanowires grown by molecular beam epitaxy. J. Appl. Phys. 110, 053506 (2011).

    Article  Google Scholar 

  11. B. Alloing, S. Vézian, O. Tottereau, P. Vennéguès, E. Beraudo, and J. Zuniga-Péreza: On the polarity of GaN micro- and nanowires epitaxially grown on sapphire (0001) and Si(111) substrates by metal organic vapor phase epitaxy and ammonia-molecular beam epitaxy. Appl. Phys. Lett. 98, 011914 (2011).

    Article  Google Scholar 

  12. L. Largeau, E. Galopin, N. Gogneau, L. Travers, F. Glas, and J-C. Harmand: N-polar GaN nanowires seeded by Al droplets on Si(111). Cryst. Growth Des. 12, 2724–2729 (2012).

    Article  CAS  Google Scholar 

  13. S. Fernández-Garrido, X. Kong, T. Gotschke, R. Calarco, L. Geelhaar, A. Trampert, and O. Brandt: Spontaneous nucleation and growth of GaN nanowires: The fundamental role of crystal polarity. Nano Lett. 12, 6119−6125 (2012).

    Article  Google Scholar 

  14. J. Tafto and J.C.H. Spence: A simple method for the determination of structure-factor phase relationships and crystal polarity using electron diffraction. J. Appl. Cryst. 15, 60–64 (1982).

    Article  CAS  Google Scholar 

  15. B. Daudin, J.L. Rouviere, and M. Arley: Polarity determination of GaN films by ion channeling and convergent beam electron diffraction. Appl. Phys. Lett. 69 (17), 2480–2482 (1996).

    Article  CAS  Google Scholar 

  16. F.A. Ponce, D.P. Bour, W.T. Young, M. Saunders, and J.W. Steeds: Determination of lattice polarity for growth of GaN bulk single crystals and epitaxial layers. Appl. Phys. Lett. 69 (3), 337–339 (1996).

    Article  CAS  Google Scholar 

  17. M. De Graef: Introduction to Conventional Transmission Electron Microscopy, Cambridge Solid State Science Series (Cambridge University Press, Cambridge, U.K., 2003); pp. 273–275.

    Google Scholar 

  18. D.B. Williams and C.B. Carter: Transmission Electron Microscopy Part 1: Basics (Springer Science+Business Media, New York, New York, 2009); pp. 167–168.

    Book  Google Scholar 

  19. M. de la Mata, C. Magen, J. Gazquez, M.I.B. Utama, M. Heiss, S. Lopatin, F. Furtmayr, C.J. Fernández-Rojas, B. Peng, J.R. Morante, R. Rurali, M. Eickhoff, A. Fontcuberta i Morral, Q. Xiong, and J. Arbiol: Polarity assignment in ZnTe, GaAs, ZnO, and GaN-AlN nanowires from direct dumbbell analysis. Nano Lett. 12, 2579–2586 (2012).

    Article  Google Scholar 

  20. E. Okunishi, I. Ishikawa, H. Sawada, F. Hosokawa, M. Hori, and Y. Kondo: Visualization of light elements at ultrahigh resolution by STEM annular bright field microscopy. Microsc. Microanal. 15, 164–165 (2009).

    Article  Google Scholar 

  21. S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, T. Yamamoto, and Y. Ikuhara: Robust atomic resolution imaging of light elements using scanning transmission electron microscopy. Appl. Phys. Lett. 95, 191913 (2009).

    Article  Google Scholar 

  22. S.D. Findlay, N. Shibata, H. Sawada, E. Okunishi, Y. Kondo, and Y. Ikuhara: Dynamics of annular bright field imaging in scanning transmission electron microscopy. Ultramicroscopy 110, 903–923 (2010).

    Article  CAS  Google Scholar 

  23. E. Okunishi, H. Sawada, and Y. Kondo: Experimental study of annular bright field (ABF) imaging using aberration-corrected scanning transmission electron microscopy (STEM). Micron 43, 538–544 (2012).

    Article  CAS  Google Scholar 

  24. M.I. den Hertog, F. González-Posada, R. Songmuang, J.L. Rouviere, T. Fournier, B. Fernandez, and E. Monroy: Correlation of polarity and crystal structure with optoelectronic and transport properties of GaN/AlN/GaN nanowire sensors. Nano Lett. 12, 5691–5696 (2012).

    Article  Google Scholar 

  25. M.D. Brubaker, S.M. Duff, T.E. Harvey, P.T. Blanchard, A. Roshko, A.W. Sanders, N.A. Sanford, and K.A. Bertness: Polarity-controlled GaN/AlN nucleation layers for selective-area growth of GaN nanowire arrays on Si(111) substrates by molecular beam epitaxy. Cryst. Growth Des. 16, 596–604 (2016).

    Article  CAS  Google Scholar 

  26. X. Zhang, H. Lourenço-Martins, S. Meuret, M. Kociak, B. Haas, J-L. Rouvière, P-H. Jouneau, C. Bougerol, T. Auzelle, D. Jalabert, X. Biquard, B. Gayral, and B. Daudin: InGaN nanowires with high InN molar fraction: Growth, structural and optical properties. Nanotechnology 27, 195704 (2016).

    Article  Google Scholar 

  27. P. Aseev, Ž. Gačević, A. Torres-Pardo, J.M. González-Calbet, and E. Calleja: Improving optical performance of GaN nanowires grown by selective area growth homoepitaxy: Influence of substrate and nanowire dimensions. Appl. Phys. Lett. 108, 253109 (2016).

    Article  Google Scholar 

  28. P.J. Phillips, S.D. Carnevale, R. Kumar, R.C. Myers, and R.F. Klie: Full-scale characterization of UVLED AlxGa1−xN nanowires via advanced electron microscopy. ACS Nano 7, 5045–5051 (2013).

    Article  CAS  Google Scholar 

  29. K.A. Bertness, A. Roshko, L.M. Mansfield, T.E. Harvey, and N.A. Sanford: Mechanism for spontaneous growth of GaN nanowires with molecular beam epitaxy. J. Cryst. Growth. 310, 3154–3158 (2008).

    Article  CAS  Google Scholar 

  30. Disclaimer: Commercial instruments are identified only in order to adequately specify certain procedures.In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the products identified are necessarily the best available for the purpose.

  31. T. Mitate, S. Mizuno, H. Takahata, R. Kakegawa, T. Matsuokab, and N. Kuwano: InN polarity determination by convergent-beam electron diffraction. Appl. Phys. Lett. 86, 134103 (2005).

    Article  Google Scholar 

  32. F. Liu, R. Collazo, S. Mita, Z. Sitar, S.J. Pennycook, and G. Duscher: Direct observation of inversion domain boundaries of GaN on c-sapphire at Sub-Ångstrom resolution. Adv. Mater. 10, 2162–2165 (2008).

    Article  Google Scholar 

  33. P.A. Stadelmann: EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131–145 (1987).

    Article  CAS  Google Scholar 

  34. A. Urban, J. Malindretos, J-H. Klein-Wiele, P. Simon, and A. Rizzi: Ga-polar GaN nanocolumn arrays with semipolar faceted tips. New J. Phys. 15, 053045 (2013).

    Article  Google Scholar 

  35. Ž. Gačević, A. Bengoechea-Encabo, S. Albert, A. Torres-Pardo, J.M. González-Calbet, and E. Calleja: Crystallographically uniform arrays of ordered (In)GaN nanocolumns. J. Appl. Phys. 117, 035301 (2015).

    Article  Google Scholar 

  36. J.M. Zuo: Convergent beam electron diffraction. In Electron Crystallography, T.E. Weirich, J.L. Lábár, and X. Zou eds.; Springer NATO Science Series: Dordrecht, The Netherlands, 2006; pp. 143–168.

    Chapter  Google Scholar 

  37. A. Howie: Quantitative experimental study of dislocations and stacking faults by transmission electron microscopy. Metall. Rev. 6, 467–503 (1961).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexana Roshko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roshko, A., Brubaker, M.D., Blanchard, P.T. et al. Comparison of convergent beam electron diffraction and annular bright field atomic imaging for GaN polarity determination. Journal of Materials Research 32, 936–946 (2017). https://doi.org/10.1557/jmr.2016.443

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.443

Navigation