Skip to main content
Log in

Flow softening behavior of Ti–13V–11Cr–3Al beta Ti alloy in double-hit hot compression tests

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Single- and double-hit hot compression tests were performed at 1030 °C and strain rate of 0.1 s−1 on Ti–13V–11Cr–3Al beta Ti alloy to investigate the flow behavior and mechanism of microstructural evolution during the interpass period. It was observed that the flow stress level and the extent of yield point phenomena (YPP) were increased by an increase in the grain size. After the first pass, the microstructure was bimodal of large deformed grains and small recrystallized grains formed by continuous dynamic recrystallization. The increase in the interpass time to 100 s, led to the decrease in the yield drop and extent of YPP. However, the further increase in the interpass time to 300s would result in an inverse effect. A combination between static recrystallization and metadynamic recrystallization was found responsible for grain refinement in the samples subjected to the interpass times below 100 s. At longer interpass times, i.e., 300 s, grain growth increased the average grain size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. P. Uranga, A.I. Fernández, B. López, and J.M. Rodriguez-Ibabe: Transition between static and metadynamic recrystallisation kinetics in coarse Nb microalloyed austenite. Mater. Sci. Eng., A 345, 319 (2003).

    Article  Google Scholar 

  2. Y.C. Lin, X.M. Chen, M.S. Chen, Y. Zhou, D.X. Wen, and D.G. He: A new method to predict the metadynamic recrystallization behavior in a typical nickel-based superalloy. Appl. Phys. A: Solids Surf. 122, 601 (2016).

    Article  Google Scholar 

  3. S. Gu, C. Zhang, L. Zhang, and W. Shen: Characteristics of metadynamic recrystallisation of Nimonic 80A superalloy. J. Mater. Research 30, 538 (2015).

    Article  CAS  Google Scholar 

  4. S-H. Cho and Y-C. Yoo: Metadynamic recrystallisation of austenitic stainless steel. J. Mater. Sci. 36, 4279 (2001).

    Article  CAS  Google Scholar 

  5. D. Xu, B. Zhang, M. Zhu, and H. Zhao: Meta-dynamic recrystallization behavior of SCM435 steel. Metallurgist 59, 899 (2016).

    Article  CAS  Google Scholar 

  6. H. Qi and Y. Li: Metadynamic recrystallization of the as cast 42CrMo steel after normalizing and tempering during hot compression. Chinese J. Mech. Eng. 25, 853 (2012).

    Article  CAS  Google Scholar 

  7. A. Momeni, A. Shokuhfar, and S.M. Abbasi: Metadynamic recrystallization of a precipitation hardenable stainless steel. MJoM Metalurgija — J. Metal 13, 179 (2007).

    CAS  Google Scholar 

  8. X. Li, H-B. Zhang, Z-H. Luo, and Y. Zhang: Kinetics for static recrystallization after hot working of 0.38C-0.99Cr-0.16Mo steel. J. Central South University Technol. 11, 353 (2004).

    Article  CAS  Google Scholar 

  9. H. Matsumoto, M. Kitamura, Y. Li, Y. Koizumi, and A. Chiba: Hot forging characteristic of Ti–5Al–5V–5Mo–3Cr alloy with single metastable β microstructure. Mater. Sci. Eng., A 611, 337 (2014).

    Article  CAS  Google Scholar 

  10. S.M. Abbasi and A. Momeni: Effect of hot working and post-deformation heat treatment on microstructure and tensile properties of Ti–6Al–4V alloy. Trans. Nonferrous Met. Soc. China 21, 1728 (2011).

    Article  CAS  Google Scholar 

  11. D-L. Ouyang, K-L. Wang, and X. Cui: Dynamic recrystallisation of Ti–6Al–2Zr–1Mo–1V in β forging process. Trans. Nonferrous Met. Soc. China 22, 761 (2012).

    Article  CAS  Google Scholar 

  12. S.M. Abbasi, A. Momeni, A. Akhondzadeh, and S.M. Ghazi Mirsaed: Microstructure and mechanical behavior of hot compressed Ti–6V–6Mo–6Fe–3Al. Mater. Sci. Eng., A 639, 21 (2015).

    Article  CAS  Google Scholar 

  13. Y.Y. Luo, Z.P. Xi, W.D. Zeng, X.N. Mao, Y.L. Yang, and H.Z. Niu: Characteristics of high-temperature deformation behavior of Ti–45Al–2Cr–3Ta–0.5W alloy. J. Mater. Eng. Perform. 23, 3577 (2014).

    Article  CAS  Google Scholar 

  14. S.M. Abbasi, M. Morakabati, A.H. Sheikhali, and A. Momeni: Hot deformation behavior of beta titanium Ti–13V–11Cr–3Al alloy. Met. Mater. Trans. 45A, 5201 (2014).

    Article  Google Scholar 

  15. T. Chandra, M. Ionescu, and D. Mantovani: Hot deformation and dynamic recrystallisation of the beta phase in titanium alloys. Mater. Sci. Forum 707–709, 127 (2012).

    Google Scholar 

  16. J.K. Fan, H.C. Kou, M.J. Lai, B. Tang, H. Chang, and J.S. Li: Hot deformation mechanism and microstructure evolution of a new near β Titanium alloy. Mater. Sci. Eng., A 584, 121 (2013).

    Article  CAS  Google Scholar 

  17. A.A. Babareko, O.S. Belova, V.N. Kopilov, I.N. Razuvaeva, and Y.D. Khesin: Dynamic recrystallisation of beta-phase in titanium alloy. Met. Sci. Heat Treat. 33, 703 (1991).

    Article  Google Scholar 

  18. A. Momeni and S.M. Abbasi: Effect of hot working on flow behavior of Ti–6Al–4V alloy in single phase and two phase regions. Mater. Des. 31, 3599 (2010).

    Article  CAS  Google Scholar 

  19. S.M. Abbasi, A. Momeni, Y.C. Lin, and H.R. Jafarian: Dynamic softening mechanism in Ti–13V–11Cr–3Al beta Ti alloy during hot compressive deformation. Mater. Sci. Eng., A 665, 154 (2016).

    Article  CAS  Google Scholar 

  20. G.R. Ebrahimi, A. Momeni, S.M. Abbasi, and H. Monajatizadeh: Constitutive analysis and processing map for hot working of a Ni–Cu alloy. Met. Mater. Int. 19, 11 (2013).

    Article  CAS  Google Scholar 

  21. L. Longfei, Y. Wangyue, and S. Zuqing: Dynamic recrystallisation of ferrite in a low-carbon steel. Met. Mater. Trans. 37, 609 (2006).

    Article  Google Scholar 

  22. S. Kang, J-G. Jung, M. Kang, W. Woo, and Y-K. Lee: The effects of grain size on yielding, strain hardening, and mechanical twinning in Fe–18Mn–0.6C–1.5Al twinning-induced plasticity steel. Mater. Sci. Eng., A 652, 212 (2016).

    Article  CAS  Google Scholar 

  23. A. Momeni, S.M. Abbasi, and A. Shokuhfar: Dynamic and metadynamic recrystallisation of a martensitic precipitation hardenable stainless steel. Can. Metall. Quart. 46, 189 (2007).

    Article  CAS  Google Scholar 

  24. D.G. He, Y.C. Lin, M.S. Chen, and L. Li: Kinetics equations and microstructural evolution during metadynamic recrystallization in a nickel-based superalloy with δ phase. J. Alloys Compd. 690, 971 (2017).

    Article  CAS  Google Scholar 

  25. Y.C. Lin, Y.X. Liu, M.S. Chen, M.H. Huang, X. Ma, and Z.L. Long: Study of static recrystallization behavior in hot deformed Ni-based superalloy using cellular automaton model. Mater. Design 99, 107 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Momeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momeni, A., Abbasi, S.M., Morakabati, M. et al. Flow softening behavior of Ti–13V–11Cr–3Al beta Ti alloy in double-hit hot compression tests. Journal of Materials Research 31, 3900–3906 (2016). https://doi.org/10.1557/jmr.2016.430

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.430

Navigation