Abstract
The effects of different Sn contents on the microstructure and tensile properties of an in situ prepared Al–15% Mg2Si composite were investigated. Adding 5 wt% Sn not only reduced the average size of Mg2Si primary particles from ∼55 µm to ∼10 µm, but also increased the ultimate tensile strength and elongation values. Mg2Sn intermetallic was identified in Al–15% Mg2Si–5% Sn composite and the lowest disregistry was also found for \({(001)_{{\rm{M}}{{\rm{g}}_2}{\rm{Sn}}}}\left\| {{{(001)}_{{\rm{M}}{{\rm{g}}_2}{\rm{Si}}}}} \right.\), indicating that Mg2Sn can be a potent heterogeneous nucleation site for Mg2Si particles. Computer-aided cooling curve analysis revealed that Sn addition changes the solidification performance of the material by increasing both solidification time and recalescence undercooling and also reducing the growth temperature to some extent. The solidification behavior of the composite was also explained in terms of the presence of oxide bifilms in the liquid Al.
Similar content being viewed by others
References
M. Emamy, M. Oliayee, and K. Tavighi: Microstructures and tensile properties of Al/2024–Al4Sr composite after hot extrusion and T6 heat treatment. Mater. Sci. Eng., A. 625, 303 (2015).
S.C. Tjong and Z. Ma: Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng., R 29, 49 (2000).
R. Khorshidi, A.H. Raouf, M. Emamy, and J. Campbell: The study of Li effect on the microstructure and tensile properties of cast Al–Mg2 Si metal matrix composite. J. Alloys Compd. 509, 9026 (2011).
Y. Liu, S. Kang, and H. Kim: The complex microstructures in an as-cast Al–Mg–Si alloy. Mater. Lett. 41, 267 (1999).
J. Zhang, Z. Fan, Y.Q. Wang, and B.L. Zhou: Equilibrium pseudobinary Al–Mg2Si phase diagram. Mater. Sci. Technol. 17, 494 (2001).
M. Ghorbani, M. Emamy, R. Khorshidi, J. Rasizadehghani, and A. Emami: Effect of Mn addition on the microstructure and tensile properties of Al–15% Mg2Si composite. Mater. Sci. Eng., A 550, 191 (2012).
C. Li, Y. Wu, H. Li, Y. Wu, and X. Liu: Effect of Ni on eutectic structural evolution in hypereutectic Al–Mg2Si cast alloys. Mater. Sci. Eng., A 528, 573 (2010).
L. Lu, K. Thong, and M. Gupta: Mg-based composite reinforced by Mg2Si. Compos. Sci. Technol. 63, 627 (2003).
R. Hadian, M. Emamy, and J. Campbell: Modification of cast Al–Mg2Si metal matrix composite by Li. Metall. Mater. Trans. B 40, 822 (2009).
X.F. Wu, G.G. Zhang, and F.F. Wu: Microstructure and dry sliding wear behavior of cast Al–Mg2Si in situ metal matrix composite modified by Nd. Rare Met. 32, 284 (2013).
H.C. Yu, H.Y. Wang, L. Chen, M. Zha, C. Wang, C. Li, and Q.C. Jiang: Influence of Li2Sb additions on microstructure and mechanical properties of Al–20Mg2Si alloy. Materials 9, 243 (2016).
Y. Sun, S. Ma, H. Wang, L. Chen, K. Gao, Y. Ma, and B. Liu: Effects of complex modification by Sr–Sb on the microstructures and mechanical properties of Al–18 wt% Mg2Si–4.5 Cu alloys. Materials 9, 157 (2016).
S. Farahany, H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Kadir, A.F. Lotfabadi, and A. Ourdjini: In situ thermal analysis and macroscopical characterization of Mg–x Ca and Mg–0.5Ca–x Zn alloy systems. Thermochim. Acta 527, 180 (2012).
Z.H. Huang, S.M. Liang, R.S. Chen, and E.H. Han: Solidification pathways and constituent phases of Mg–Zn–Y–Zr alloys. J. Alloys Compd. 468, 170 (2009).
M. Malekan and S.G. Shabestari: Computer-aided cooling curve thermal analysis used to predict the quality of aluminum alloys. J. Therm. Anal. Calorim. 103, 453 (2011).
C. Li, X. Liu, and Y. Wu: Refinement and modification performance of Al–P master alloy on primary Mg2Si in Al–Mg–Si alloys. J. Alloys Compd. 465, 145 (2008).
M. Azarbarmas, M. Emamy, J. Rassizadehghani, and M. Alipour: The influence of beryllium addition on the microstructure and mechanical properties of Al–15% Mg2Si in situ metal matrix composite. Mater. Sci. Eng., A 528, 8205 (2011).
A. Mohamed, F. Samuel, A. Samuel, H. Doty, and S. Valtierra: Influence of tin addition on the microstructure and mechanical properties of Al–Si–Cu–Mg and Al–Si–Mg casting alloys. Metall. Mater. Trans. A 39, 490 (2008).
I.H. Jung, D.H. Kang, W.J. Park, N.J. Kim, and S. Ahn: Thermodynamic modeling of the Mg–Si–Sn system. Calphad 31, 192 (2007).
J. Hirsch, B. Skrotzki, and G. Gottstein: Aluminium alloys: Their Physical and Mechanical Properties (Wiley-VCH Weinheim, Germany, 2008).
A. Kozlov, J. Gröbner, and R. Schmid-Fetzer: Phase formation in Mg–Sn–Si and Mg–Sn–Si–Ca alloys. J. Alloys Compd. 509, 3326 (2011).
A.A. Nayeb-Hashemi and J.B. Clark: Alloy phase diagrams. In ASM Handbook, 2nd ed., Vol. 3 (ASM International, Materials Park, 1992); pp. 1107.
B.L. Bramfitt: The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans. 1, 1987 (1970).
J. Campbell: Castings, 2nd ed. (Elsevier Science, Oxford, 2003); pp. 2, 64, 67.
D. Dispinar and J. Campbell: Porosity, hydrogen and bifilm content in Al alloy castings. Mater. Sci. Eng., A 528, 3860 (2011).
J. Campbell: The consolidation of metals: The origin of bifilms. J. Mater. Sci. 51, 96 (2016).
H. Liu, Y. Chen, Y. Tang, S. Wei, and G. Niu: The microstructure, tensile properties, and creep behavior of as-cast Mg–(1–10)% Sn alloys. J. Alloys Compd. 440, 122 (2007).
R. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials (John Wiley and Sons, New York, 1996).
G. Dieter: Mechanical Metallurgy, SI metric (McGraw-Hill, London, UK, 1988).
M. Warmuzek: Aluminum–Silicon Casting Alloys: An Atlas of Microfractographs (ASM International, 2004).
L. Babout, Y. Brechet, E. Maire, and R. Fougeres: On the competition between particle fracture and particle decohesion in metal matrix composites. Acta Mater. 52, 4517 (2004).
ACKNOWLEDGMENT
The authors gratefully acknowledge University of Tehran for financial support of this work.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Emamy, M., Pourbahari, B., Malekan, M. et al. Effects of Mg2Sn intermetallic on the microstructure and tensile properties of Al–15% Mg2Si–X% Sn composite. Journal of Materials Research 31, 3891–3899 (2016). https://doi.org/10.1557/jmr.2016.426
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2016.426