Skip to main content

Advertisement

Log in

Effects of Mg2Sn intermetallic on the microstructure and tensile properties of Al–15% Mg2Si–X% Sn composite

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of different Sn contents on the microstructure and tensile properties of an in situ prepared Al–15% Mg2Si composite were investigated. Adding 5 wt% Sn not only reduced the average size of Mg2Si primary particles from ∼55 µm to ∼10 µm, but also increased the ultimate tensile strength and elongation values. Mg2Sn intermetallic was identified in Al–15% Mg2Si–5% Sn composite and the lowest disregistry was also found for \({(001)_{{\rm{M}}{{\rm{g}}_2}{\rm{Sn}}}}\left\| {{{(001)}_{{\rm{M}}{{\rm{g}}_2}{\rm{Si}}}}} \right.\), indicating that Mg2Sn can be a potent heterogeneous nucleation site for Mg2Si particles. Computer-aided cooling curve analysis revealed that Sn addition changes the solidification performance of the material by increasing both solidification time and recalescence undercooling and also reducing the growth temperature to some extent. The solidification behavior of the composite was also explained in terms of the presence of oxide bifilms in the liquid Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. M. Emamy, M. Oliayee, and K. Tavighi: Microstructures and tensile properties of Al/2024–Al4Sr composite after hot extrusion and T6 heat treatment. Mater. Sci. Eng., A. 625, 303 (2015).

    Article  CAS  Google Scholar 

  2. S.C. Tjong and Z. Ma: Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng., R 29, 49 (2000).

    Article  Google Scholar 

  3. R. Khorshidi, A.H. Raouf, M. Emamy, and J. Campbell: The study of Li effect on the microstructure and tensile properties of cast Al–Mg2 Si metal matrix composite. J. Alloys Compd. 509, 9026 (2011).

    Article  CAS  Google Scholar 

  4. Y. Liu, S. Kang, and H. Kim: The complex microstructures in an as-cast Al–Mg–Si alloy. Mater. Lett. 41, 267 (1999).

    Article  CAS  Google Scholar 

  5. J. Zhang, Z. Fan, Y.Q. Wang, and B.L. Zhou: Equilibrium pseudobinary Al–Mg2Si phase diagram. Mater. Sci. Technol. 17, 494 (2001).

    Article  CAS  Google Scholar 

  6. M. Ghorbani, M. Emamy, R. Khorshidi, J. Rasizadehghani, and A. Emami: Effect of Mn addition on the microstructure and tensile properties of Al–15% Mg2Si composite. Mater. Sci. Eng., A 550, 191 (2012).

    Article  CAS  Google Scholar 

  7. C. Li, Y. Wu, H. Li, Y. Wu, and X. Liu: Effect of Ni on eutectic structural evolution in hypereutectic Al–Mg2Si cast alloys. Mater. Sci. Eng., A 528, 573 (2010).

    Article  Google Scholar 

  8. L. Lu, K. Thong, and M. Gupta: Mg-based composite reinforced by Mg2Si. Compos. Sci. Technol. 63, 627 (2003).

    Article  CAS  Google Scholar 

  9. R. Hadian, M. Emamy, and J. Campbell: Modification of cast Al–Mg2Si metal matrix composite by Li. Metall. Mater. Trans. B 40, 822 (2009).

    Article  Google Scholar 

  10. X.F. Wu, G.G. Zhang, and F.F. Wu: Microstructure and dry sliding wear behavior of cast Al–Mg2Si in situ metal matrix composite modified by Nd. Rare Met. 32, 284 (2013).

    Article  Google Scholar 

  11. H.C. Yu, H.Y. Wang, L. Chen, M. Zha, C. Wang, C. Li, and Q.C. Jiang: Influence of Li2Sb additions on microstructure and mechanical properties of Al–20Mg2Si alloy. Materials 9, 243 (2016).

    Article  Google Scholar 

  12. Y. Sun, S. Ma, H. Wang, L. Chen, K. Gao, Y. Ma, and B. Liu: Effects of complex modification by Sr–Sb on the microstructures and mechanical properties of Al–18 wt% Mg2Si–4.5 Cu alloys. Materials 9, 157 (2016).

    Article  Google Scholar 

  13. S. Farahany, H.R. Bakhsheshi-Rad, M.H. Idris, M.R. Kadir, A.F. Lotfabadi, and A. Ourdjini: In situ thermal analysis and macroscopical characterization of Mg–x Ca and Mg–0.5Ca–x Zn alloy systems. Thermochim. Acta 527, 180 (2012).

    Article  CAS  Google Scholar 

  14. Z.H. Huang, S.M. Liang, R.S. Chen, and E.H. Han: Solidification pathways and constituent phases of Mg–Zn–Y–Zr alloys. J. Alloys Compd. 468, 170 (2009).

    Article  CAS  Google Scholar 

  15. M. Malekan and S.G. Shabestari: Computer-aided cooling curve thermal analysis used to predict the quality of aluminum alloys. J. Therm. Anal. Calorim. 103, 453 (2011).

    Article  CAS  Google Scholar 

  16. C. Li, X. Liu, and Y. Wu: Refinement and modification performance of Al–P master alloy on primary Mg2Si in Al–Mg–Si alloys. J. Alloys Compd. 465, 145 (2008).

    Article  CAS  Google Scholar 

  17. M. Azarbarmas, M. Emamy, J. Rassizadehghani, and M. Alipour: The influence of beryllium addition on the microstructure and mechanical properties of Al–15% Mg2Si in situ metal matrix composite. Mater. Sci. Eng., A 528, 8205 (2011).

    Article  CAS  Google Scholar 

  18. A. Mohamed, F. Samuel, A. Samuel, H. Doty, and S. Valtierra: Influence of tin addition on the microstructure and mechanical properties of Al–Si–Cu–Mg and Al–Si–Mg casting alloys. Metall. Mater. Trans. A 39, 490 (2008).

    Article  Google Scholar 

  19. I.H. Jung, D.H. Kang, W.J. Park, N.J. Kim, and S. Ahn: Thermodynamic modeling of the Mg–Si–Sn system. Calphad 31, 192 (2007).

    Article  CAS  Google Scholar 

  20. J. Hirsch, B. Skrotzki, and G. Gottstein: Aluminium alloys: Their Physical and Mechanical Properties (Wiley-VCH Weinheim, Germany, 2008).

    Google Scholar 

  21. A. Kozlov, J. Gröbner, and R. Schmid-Fetzer: Phase formation in Mg–Sn–Si and Mg–Sn–Si–Ca alloys. J. Alloys Compd. 509, 3326 (2011).

    Article  CAS  Google Scholar 

  22. A.A. Nayeb-Hashemi and J.B. Clark: Alloy phase diagrams. In ASM Handbook, 2nd ed., Vol. 3 (ASM International, Materials Park, 1992); pp. 1107.

    Google Scholar 

  23. B.L. Bramfitt: The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans. 1, 1987 (1970).

    Article  CAS  Google Scholar 

  24. J. Campbell: Castings, 2nd ed. (Elsevier Science, Oxford, 2003); pp. 2, 64, 67.

    Google Scholar 

  25. D. Dispinar and J. Campbell: Porosity, hydrogen and bifilm content in Al alloy castings. Mater. Sci. Eng., A 528, 3860 (2011).

    Article  Google Scholar 

  26. J. Campbell: The consolidation of metals: The origin of bifilms. J. Mater. Sci. 51, 96 (2016).

    Article  CAS  Google Scholar 

  27. H. Liu, Y. Chen, Y. Tang, S. Wei, and G. Niu: The microstructure, tensile properties, and creep behavior of as-cast Mg–(1–10)% Sn alloys. J. Alloys Compd. 440, 122 (2007).

    Article  CAS  Google Scholar 

  28. R. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials (John Wiley and Sons, New York, 1996).

    Google Scholar 

  29. G. Dieter: Mechanical Metallurgy, SI metric (McGraw-Hill, London, UK, 1988).

    Google Scholar 

  30. M. Warmuzek: Aluminum–Silicon Casting Alloys: An Atlas of Microfractographs (ASM International, 2004).

    Google Scholar 

  31. L. Babout, Y. Brechet, E. Maire, and R. Fougeres: On the competition between particle fracture and particle decohesion in metal matrix composites. Acta Mater. 52, 4517 (2004).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors gratefully acknowledge University of Tehran for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Emamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emamy, M., Pourbahari, B., Malekan, M. et al. Effects of Mg2Sn intermetallic on the microstructure and tensile properties of Al–15% Mg2Si–X% Sn composite. Journal of Materials Research 31, 3891–3899 (2016). https://doi.org/10.1557/jmr.2016.426

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.426

Navigation