Skip to main content

Advertisement

Log in

Fabrication of nanogranular flakes of magnetic metallic nanoparticles in an oxide matrix

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Novel nanogranular flakes in which magnetic metallic nanoparticles are highly dispersed in an oxide matrix were fabricated for use as a constituent material in bulk nanogranular composites. A simple milling process using core/shell nanoparticles of magnetic metal/oxide was used to produce nanogranular flakes composed of magnetic metallic nanoparticles in an oxide matrix. The high dispersion of the metallic nanoparticles in the oxide matrix increased the electrical resistivity of the flakes. In addition, neighboring nanoparticles in the flakes interacted with each other via magnetic exchange coupling, and the flakes exhibited good soft magnetism with low coercivity when they contained a high concentration of highly dispersed magnetic metallic nanoparticles. The coercivity of the flakes could be decreased significantly by annealing and by modifying the surface of the flakes. A minimum coercivity of 8.7 Oe was obtained using flakes with a composition of Fe0.5Ni0.5–4 wt% Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, and J.P. Liu: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 23, 821 (2011).

    Article  CAS  Google Scholar 

  2. M. Araghchini, J. Chen, V.D. Nguyen, D.V. Harburg, D. Jin, J. Kim, M.S. Kim, S. Lim, B. Lu, D. Piedra, J. Qiu, J. Ranson, M. Sun, X. Yu, H. Yuu, M.G. Allen, J.A. del Alamo, G. DesGroseilliers, F. Herrault, J.H. Lang, C.G. Levey, C.B. Murray, D. Otten, T. Palacios, D.J. Perreault, and C.R. Sullivan: A technology overview of the powerchip development program. IEEE Trans. Power Electron. 28 (9), 4182 (2013).

    Article  Google Scholar 

  3. S. Ohnuma, H. Fujimori, S. Mitani, and T. Masumoto: High-frequency magnetic properties in metal-nonmetal granular films (invited). J. Appl. Phys. 79 (8), 5130 (1996).

    Article  CAS  Google Scholar 

  4. G. Herzer: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26 (5), 1397 (1990).

    Article  CAS  Google Scholar 

  5. D. Yao, S. Ge, X. Zhou, and H. Zuo: Grain size dependence of coercivity in magnetic metal-insulator nanogranular films with uniaxial magnetic anisotropy. J. Appl. Phys. 107, 073902–1 (2010).

    Article  Google Scholar 

  6. T. Suetsuna, S. Suenaga, and K. Harada: Bulk nanogranular composite of magnetic metal and insulating oxide matrix. Scr. Mater. 113, 89 (2016).

    Article  CAS  Google Scholar 

  7. C. Kittel: On the theory of ferromagnetic resonance absorption. Phys. Rev. 73 (2), 155 (1948).

    Article  CAS  Google Scholar 

  8. L. Qiao, F. Wen, J. Wei, J. Wang, and F. Li: Microwave permeability spectra of flake-shaped FeCuNbSiB particle composites. J. Appl. Phys. 103, 063903–1 (2008).

    Article  Google Scholar 

  9. Y. Zhao, X. Zhang, and J.Q. Xiao: Submicrometer laminated Fe/SiO2 soft magnetic composites—An effective route to materials for high-frequency applications. Adv. Mater. 17 (7), 915 (2005).

    Article  CAS  Google Scholar 

  10. T. Suetsuna, S. Suenaga, T. Takahashi, and K. Harada: Synthesis of self-forming core/shell nanoparticles of magnetic metal/nonmagnetic oxide. Acta Mater. 78, 320 (2014).

    Article  CAS  Google Scholar 

  11. N.C. Halder and C.N.J. Wagner: Separation of particle size and lattice strain in integral breadth measurements. Acta Crystallogr. 20, 312 (1966).

    Article  CAS  Google Scholar 

  12. T. Suetsuna, S. Suenaga, S. Sakurada, K. Harada, M. Tomimatsu, and T. Takahashi: Effects of crystalline grain size and packing ratio of self-forming core/shell nanoparticles on magnetic properties at up to GHz bands. J. Magn. Magn. Mater. 323, 1793 (2011).

    Article  CAS  Google Scholar 

  13. R.M. Bozorth and J.G. Walker: Magnetic crystal anisotropy and magnetostriction of iron–nickel alloys. Phys. Rev. 89 (3), 624 (1953).

    Article  CAS  Google Scholar 

  14. J.W. Shih: Magnetic properties of iron–cobalt single crystals. Phys. Rev. 46, 139 (1934).

    Article  Google Scholar 

  15. H. Clow: Very low coercive force in nickel–iron films. Nature 194, 1035 (1962).

    Article  CAS  Google Scholar 

  16. S. Middelhoek: Domain-wall structures in magnetic double films. J. Appl. Phys. 37 (3), 1276 (1966).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Suetsuna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suetsuna, T., Harada, K. & Suenaga, S. Fabrication of nanogranular flakes of magnetic metallic nanoparticles in an oxide matrix. Journal of Materials Research 31, 3694–3703 (2016). https://doi.org/10.1557/jmr.2016.410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.410

Navigation