Abstract
Novel nanogranular flakes in which magnetic metallic nanoparticles are highly dispersed in an oxide matrix were fabricated for use as a constituent material in bulk nanogranular composites. A simple milling process using core/shell nanoparticles of magnetic metal/oxide was used to produce nanogranular flakes composed of magnetic metallic nanoparticles in an oxide matrix. The high dispersion of the metallic nanoparticles in the oxide matrix increased the electrical resistivity of the flakes. In addition, neighboring nanoparticles in the flakes interacted with each other via magnetic exchange coupling, and the flakes exhibited good soft magnetism with low coercivity when they contained a high concentration of highly dispersed magnetic metallic nanoparticles. The coercivity of the flakes could be decreased significantly by annealing and by modifying the surface of the flakes. A minimum coercivity of 8.7 Oe was obtained using flakes with a composition of Fe0.5Ni0.5–4 wt% Si.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
O. Gutfleisch, M.A. Willard, E. Brück, C.H. Chen, S.G. Sankar, and J.P. Liu: Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Adv. Mater. 23, 821 (2011).
M. Araghchini, J. Chen, V.D. Nguyen, D.V. Harburg, D. Jin, J. Kim, M.S. Kim, S. Lim, B. Lu, D. Piedra, J. Qiu, J. Ranson, M. Sun, X. Yu, H. Yuu, M.G. Allen, J.A. del Alamo, G. DesGroseilliers, F. Herrault, J.H. Lang, C.G. Levey, C.B. Murray, D. Otten, T. Palacios, D.J. Perreault, and C.R. Sullivan: A technology overview of the powerchip development program. IEEE Trans. Power Electron. 28 (9), 4182 (2013).
S. Ohnuma, H. Fujimori, S. Mitani, and T. Masumoto: High-frequency magnetic properties in metal-nonmetal granular films (invited). J. Appl. Phys. 79 (8), 5130 (1996).
G. Herzer: Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26 (5), 1397 (1990).
D. Yao, S. Ge, X. Zhou, and H. Zuo: Grain size dependence of coercivity in magnetic metal-insulator nanogranular films with uniaxial magnetic anisotropy. J. Appl. Phys. 107, 073902–1 (2010).
T. Suetsuna, S. Suenaga, and K. Harada: Bulk nanogranular composite of magnetic metal and insulating oxide matrix. Scr. Mater. 113, 89 (2016).
C. Kittel: On the theory of ferromagnetic resonance absorption. Phys. Rev. 73 (2), 155 (1948).
L. Qiao, F. Wen, J. Wei, J. Wang, and F. Li: Microwave permeability spectra of flake-shaped FeCuNbSiB particle composites. J. Appl. Phys. 103, 063903–1 (2008).
Y. Zhao, X. Zhang, and J.Q. Xiao: Submicrometer laminated Fe/SiO2 soft magnetic composites—An effective route to materials for high-frequency applications. Adv. Mater. 17 (7), 915 (2005).
T. Suetsuna, S. Suenaga, T. Takahashi, and K. Harada: Synthesis of self-forming core/shell nanoparticles of magnetic metal/nonmagnetic oxide. Acta Mater. 78, 320 (2014).
N.C. Halder and C.N.J. Wagner: Separation of particle size and lattice strain in integral breadth measurements. Acta Crystallogr. 20, 312 (1966).
T. Suetsuna, S. Suenaga, S. Sakurada, K. Harada, M. Tomimatsu, and T. Takahashi: Effects of crystalline grain size and packing ratio of self-forming core/shell nanoparticles on magnetic properties at up to GHz bands. J. Magn. Magn. Mater. 323, 1793 (2011).
R.M. Bozorth and J.G. Walker: Magnetic crystal anisotropy and magnetostriction of iron–nickel alloys. Phys. Rev. 89 (3), 624 (1953).
J.W. Shih: Magnetic properties of iron–cobalt single crystals. Phys. Rev. 46, 139 (1934).
H. Clow: Very low coercive force in nickel–iron films. Nature 194, 1035 (1962).
S. Middelhoek: Domain-wall structures in magnetic double films. J. Appl. Phys. 37 (3), 1276 (1966).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Suetsuna, T., Harada, K. & Suenaga, S. Fabrication of nanogranular flakes of magnetic metallic nanoparticles in an oxide matrix. Journal of Materials Research 31, 3694–3703 (2016). https://doi.org/10.1557/jmr.2016.410
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2016.410