Skip to main content
Log in

First principles and experimental studies of empty Si46 as anode materials for Li-ion batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

An Erratum to this article was published on 01 July 2017

This article has been updated

Abstract

The objective of this investigation was to utilize the first-principles molecular dynamics computational approach to investigate the lithiation characteristics of empty silicon clathrates (Si46) for applications as potential anode materials in lithium-ion batteries. The energy of formation, volume expansion, and theoretical capacity were computed for empty silicon clathrates as a function of Li. The theoretical results were compared against experimental data of long-term cyclic tests performed on half-cells using electrodes fabricated from Si46 prepared using a Hofmann-type elimination–oxidation reaction. The comparison revealed that the theoretically predicted capacity (of 791.6 mAh/g) agreed with experimental data (809 mAh/g) that occurred after insertion of 48 Li atoms. The calculations showed that overlithiation beyond 66 Li atoms can cause large volume expansion with a volume strain as high as 120%, which may correlate to experimental observations of decreasing capacities from the maximum at 1030 mAh/g to 553 mA h/g during long-term cycling tests. The finding suggests that overlithiation beyond 66 Li atoms may have caused damage to the cage structure and led to lower reversible capacities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

Change history

References

  1. C.J. Wen and R.A. Huggins: Chemical diffusion in intermediate phases in the lithium–silicon system. J. Solid State Chem. 37, 271 (1981).

    Article  CAS  Google Scholar 

  2. A. Timmons and J.R. Dahn: Isotropic volume expansion of particles of amorphous metallic alloys in composite negative electrodes for Li-ion batteries. J. Electrochem. Soc. 154, A444 (2007).

    Article  CAS  Google Scholar 

  3. J. Graetz, C.C. Ahn, R. Yazami, and B. Fultz: Highly reversible lithium storage in nanostructured silicon. Electrochem. Solid-State Lett. 6 (9), A194 (2003).

    Article  CAS  Google Scholar 

  4. T. Takamura, S. Ohara, M. Uehara, J. Suzuki, and K. Sekine: A vacuum deposited Si film having a Li extraction capacity over 2000 mA h/g with a long cycle life. J. Power Sources 129, 96 (2004).

    Article  CAS  Google Scholar 

  5. H. Kim, B. Han, J. Choo, and J. Cho: Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. Angew. Chem., Int. Ed. 47, 1 (2008).

    Article  CAS  Google Scholar 

  6. M. Green, E. Fielder, B. Scrosati, M. Wachtler, and J.S. Moreno: Structured silicon anodes for lithium battery applications. Electrochem. Solid-State Lett. 6 (5), A75 (2003).

    Article  CAS  Google Scholar 

  7. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui: High performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008).

    Article  CAS  Google Scholar 

  8. L-F. Cui, R. Ruffo, C.K. Chan, H. Peng, and Y. Cui: Crystalline–amorphous core–shell silicon nanowires for high capacity and high current battery electrodes. Nano Lett. 9, 491 (2009).

    Article  CAS  Google Scholar 

  9. R.B. Lewis, A. Timmons, R.E. Mar, and J.R. Dahn: In situ AFM measurements of the expansion and contraction of amorphous Sn–Co–C films reacting with lithium. J. Electrochem. Soc. 154 (3), A213 (2007).

    Article  CAS  Google Scholar 

  10. A. Timmons and J.R. Dahn: In situ optical observations of particle motion in alloy negative electrodes for Li-ion batteries. J. Electrochem. Soc. 153, A1206 (2006).

    Article  CAS  Google Scholar 

  11. S.D. Beattie, D. Larcher, M. Morcrette, B. Simon, and J-M. Tarascon: Si electrodes for Li-ion batteries—A new way to look at an old problem. J. Electrochem. Soc. 155 (2), A158 (2008).

    Article  CAS  Google Scholar 

  12. V.A. Sethuraman, M.J. Chon, M. Shimshak, V. Srinivasan, and P.R. Guduru: In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation. J. Power Sources 195, 5062 (2010).

    Article  CAS  Google Scholar 

  13. J.Y. Eom, J.W. Park, H.S. Kwon, and S. Rajendran: Electrochemical insertion of lithium into multiwalled carbon nanotube/silicon composites produced by ballmilling. J. Electrochem. Soc. 153 (9), A1678 (2006).

    Article  CAS  Google Scholar 

  14. Y. Zhang, X.G. Zhang, H.L. Zhang, Z.G. Zhao, F. Li, C. Liu, and H.M. Cheng: Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim. Acta 51, 4994 (2006).

    Article  CAS  Google Scholar 

  15. Y. Zhang, Z.G. Zhao, X.G. Zhang, H.L. Zhang, F. Li, C. Liu, and H.M. Cheng: Pyrolytic carbon-coated silicon/carbon nanotube composites: Promising application for Li-ion batteries. Int. J. Nanomanuf. 2 (1/2), 4 (2008).

    Article  CAS  Google Scholar 

  16. J.H. Ryu, J.W. Kim, Y-E. Sung, and S.M. Oh: Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid-State Lett. 7 (10), A306 (2004).

    Article  CAS  Google Scholar 

  17. R.A. Huggins and W.D. Nix: Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57 (2000).

    Article  CAS  Google Scholar 

  18. H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L. Hu, and Y. Cui: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7 (5), 310 (2012).

    Article  CAS  Google Scholar 

  19. H. Wu and Y. Cu: Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7 (5), 414 (2012).

    Article  CAS  Google Scholar 

  20. M.K. Aydinol and G. Ceder: First-principles prediction of insertion potentials in Li–Mn for secondary Li batteries. J. Electrochem. Soc. 144 (11), 3832 (1997).

    Article  CAS  Google Scholar 

  21. Y. Kubota, M.C.S. Escano, H. Nakanishi, and H. Kasai: Crystal and electronic structure of Li15Si4. J. Appl. Phys. 102, 053704 (2007).

    Article  Google Scholar 

  22. V.L. Chevrier, J.W. Zwanziger, and J.R. Dahn: First principles studies of silicon as a negative electrode materials for lithium-ion batteries. Can. J. Phys. 87, 625 (2009).

    Article  CAS  Google Scholar 

  23. V.L. Chevrier and J.R. Dahn: First principles model of amorphous silicon lithiation. J. Electrochem. Soc. 156 (6), A454 (2009).

    Article  CAS  Google Scholar 

  24. V.L. Chevrier and J.R. Dahn: First principles studies of disordered lithiated silicon. J. Electrochem. Soc. 157 (4), A392 (2010).

    Article  CAS  Google Scholar 

  25. Q. Zhang, W. Zhang, W. Wan, Y. Cui, and E. Wang: Lithium insertion in silicon nanowires: An ab initio study. Nano Lett. 10, 3243 (2010).

    Article  CAS  Google Scholar 

  26. K.S. Chan and M.A. Miller: Anodes—Synthesis and characterization of silicon clathrates for anode applications in lithium-ion batteries. Energy Storage R&D, FY2014 Final Report, Southwest Research Institute (2014).

    Google Scholar 

  27. Y. Li, R. Raghavan, N.A. Wagner, S.K. Davidowski, L. Baggetto, R. Zhao, Q. Cheng, J.L. Yarger, G.M. Veith, C. Ellis-Terrell, M.A. Miller, K.S. Chan, and C.K. Chan: Type I clathrates as novel silicon anodes: An electrochemical and structural investigation. Adv. Sci. 2, 1500057 (2015). doi: https://doi.org/10.1002/advs.201500057.

    Article  Google Scholar 

  28. X. Peng, Q. Wei, Y. Li, and C.K. Chan: First-principles study of lithiation of Type I Ba-doped silicon clathrates. J. Phys. Chem. C 119 (51), 28247 (2015). doi: https://doi.org/10.1021/acs.jpcc.5b07523.

    Article  CAS  Google Scholar 

  29. G.B. Adams, M. O’Keeffe, A.A. Kemkov, O.F. Sankey, and Y-M. Huang: Wide-band-gap Si in open four-fold-coordinated clathrate structures. Phys. Rev. B: Condens. Matter Mater. Phys. 49, 8084 (1994).

    Article  Google Scholar 

  30. A. San-Miguel and P. Toulemonde: High-pressure properties of group IV clathrates. High Pressure Res. 25, 159 (2005).

    Article  CAS  Google Scholar 

  31. P. Mélinon, P. Kéghélian, A. Perez, B. Champagnon, Y. Guyot, L. Saviot, E. Reny, C. Cros, M. Pouchard, and A.J. Dianoux: Phonon density of states of silicon clathrates: Characteristic width narrowing effect with respect to the diamond phase. Phys. Rev. B: Condens. Matter Mater. Phys. 59, 10099 (1999).

    Article  Google Scholar 

  32. CPMD, Version 3.13, IBM Corp 1990–2008, MPI für Festkörperforschung Stuttgart, 1997–2001, http://www.cpmd.org.

  33. R. Car and M. Parrinello: Unified approach for molecular dynamics and density functional theory. Phys. Rev. Lett. 55 (22), 2471 (1985).

    Article  CAS  Google Scholar 

  34. A.M. Guloy, R. Ramlau, Z. Tang, W. Schnelle, M. Baitinger, and Y. Grin: A guest-free germanium clathrate. Nature, 443, 320 (2006). doi: https://doi.org/10.1038/nature05145.

    Article  CAS  Google Scholar 

  35. K.S. Chan, M.A. Miller, C. Ellis-Terrell, and C.K. Chan: Synthesis and characterization of empty silicon clathrates for anode applications in Li-ion batteries. In Proceedings of 2016 MRS Spring Meeting, March 28-April 1, 2016, Phoenix, AZ. MRS Advance, CJO 2016, doi: https://doi.org/10.1557/adv.2016.434.

  36. J. Li and J.R. Dahn: An in-situ x-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154, A156 (2007).

    Article  CAS  Google Scholar 

  37. T. Langer, S. Dupke, H. Trill, S. Passerini, H. Eckert, R. Pöttgen, and M. Winter: Electrochemical lithiation of silicon clathrate-II. J. Electrochem. Soc. 159, A1318 (2012).

    Article  CAS  Google Scholar 

  38. N.A. Wagner, R. Raghavan, R. Zhao, Q. Wei, X. Peng, and C.K. Chan: Electrochemical cycling of sodium-filled silicon clathrate. ChemElectroChem, 1 (2), 347 (2014).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Internal Research and Development Program (Project 18.R9890) of Southwest Research Institute® (SwRI®) and the Batteries for Advanced Transportation Technologies (BATT) Program at Lawrence Berkeley National Laboratory (LBNL) through Contract No. DEAC0205CH11231, with Dr. Michel Foure at LBNL as program manager. The contribution of C.K.C. was supported by the National Science Foundation through Grant No. DMR-1206795 and startup funds from the Fulton Schools of Engineering, Arizona State University (ASU). The first principles computations were performed at the Texas Advanced Computing Center of the TerraGrid network. The authors acknowledge the clerical assistance provided by Ms. Loretta Mesa, SwRI, in the preparation of the manuscript and Ms. Ran Zhao, Ph.D. student at ASU, in the preparation of Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwai S. Chan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, K.S., Miller, M.A., Liang, W. et al. First principles and experimental studies of empty Si46 as anode materials for Li-ion batteries. Journal of Materials Research 31, 3657–3665 (2016). https://doi.org/10.1557/jmr.2016.408

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.408

Navigation