Skip to main content
Log in

Compression deformation behavior of semisolid Al2O3np reinforced 7075 aluminum matrix composites with high solid fraction

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Semisolid forging is a type of semisolid metal processing with high solid fraction. However, the presence of nanosized particles has strong influences on flow behavior of the composites in the semisolid forging process. In this study, the compression deformation behavior of nanosized Al2O3 particles (Al2O3np) reinforced 7075 aluminum matrix composites with high solid fraction was investigated by conducting semisolid isothermal compression experiment. The microstructures after semisolid compression were characterized. The results showed that the true stress decreased with the increase of the deformation temperature and size of Al2O3np, the decrease of the strain rate and mass fraction of Al2O3np. After semisolid compression, deformation degree in large deformation zone was larger than that in free deformation zone. Besides, the solid grains in large deformation zone showed evidence of having undergone different degrees of plastic deformation under different deformation conditions. Simultaneously, the deformation mechanisms during the semisolid compression process were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13

Similar content being viewed by others

References

  1. D. Abolhasani, H.R. Ezatpour, S.A. Sajjadi, and Q. Abolhasani: Microstructure and mechanical properties evolution of 6061 aluminum alloy formed by forward thixoextrusion process. Mater. Des. 49, 784–790 (2013).

    Article  CAS  Google Scholar 

  2. Ł. Rogal, J. Dutkiewicz, H.V. Atkinson, L. Lityńska-Dobrzyńska, T. Czeppe, and M. Modigell: Characterization of semi-solid processing of aluminium alloy 7075 with Sc and Zr additions. Mater. Sci. Eng., A 580, 362–373 (2013).

    Article  CAS  Google Scholar 

  3. S.B. Hassas-Irani, A. Zarei-Hanzaki, B. Bazaz, and A.A. Roostaei: Microstructure evolution and semi-solid deformation behavior of an A356 aluminum alloy processed by strain induced melt activated method. Mater. Des. 46, 579–587 (2013).

    Article  CAS  Google Scholar 

  4. T.W. Hong, S.K. Kim, H.S. Ha, M.G. Kim, D.B. Lee, and Y.J. Kim: Microstructural evolution and semisolid forming of SiC particulate reinforced AZ91HP magnesium composites. Mater. Sci. Technol. 16, 887–892 (2013).

    Article  Google Scholar 

  5. A. Bolouri, M. Shahmiri, and E.N.H. Cheshmeh: Microstructural evolution during semisolid state strain induced melt activation process of aluminum 7075 alloy. Trans. Nonferrous Met. Soc. China 20, 1663–1671 (2010).

    Article  CAS  Google Scholar 

  6. T.J. Chen, Y. Hao, and J. Sun: Effects of compression parameters on deformation behaviors of semi-solid ZA27 alloys. J. Wuhan Univ. Technol., Mater. Sci. Ed. 18, 9–14 (2003).

    CAS  Google Scholar 

  7. J.C. Choi, H.J. Park, and B.M. Kim: The influence of induction heating on the microstructure of A356 for semi-solid forging. J. Mater. Process. Technol. 87, 46–52 (1999).

    Article  Google Scholar 

  8. Y.L. Lu, M.Q. Li, W.C. Huang, and H.T. Jiang: Deformation behavior and microstructural evolution during the semi-solid compression of Al–4Cu–Mg alloy. Mater. Charact. 54, 423–430 (2005).

    Article  CAS  Google Scholar 

  9. Y.N. Chen, J. Wang, J.F. Wei, and Y.Q. Zhao: The compressive deformation behavior and deformation mechanism of Ti14 alloy in semi-solid State. J. Wuhan Univ. Technol., Mater. Sci. Ed. 29, 143–147 (2014).

    Article  Google Scholar 

  10. J.Y. Li, S. Sugiyama, and J. Yanagimoto: Microstructural evolution and flow stress of semi-solid type 304 stainless steel. J. Mater. Process. Technol. 161, 396–406 (2005).

    Article  CAS  Google Scholar 

  11. L.N. Thanh and M. Suéry: Microstructure and compression behaviour in the semisolid state of short-fibre-reinforced A356 aluminium alloys. Mater. Sci. Eng., A 196, 33–44 (1995).

    Article  Google Scholar 

  12. X.H. Chen and H. Yan: Fabrication of nanosized Al2O3 reinforced aluminum matrix composites by subtype multifrequency ultrasonic vibration. J. Mater. Res. 30, 2197–2209 (2015).

    Article  CAS  Google Scholar 

  13. M. Srivastava, V.K.W. Grips, and K.S. Rajam: Electrochemical deposition and tribological behaviour of Ni and Ni–Co metal matrix composites with SiC nano-particles. Appl. Surf. Sci. 253, 3814–3824 (2007).

    Article  CAS  Google Scholar 

  14. X.H. Chen and H. Yan: Solid–liquid interface dynamics during solidification of Al 7075–Al2O3np based metal matrix composites. Mater. Des. 94, 148–158 (2016).

    Article  CAS  Google Scholar 

  15. J. Jiang and Y. Wang: Microstructure and mechanical properties of the rheoformed cylindrical part of 7075 aluminum matrix composite reinforced with nano-sized SiC particles. Mater. Des. 79, 32–41 (2015).

    Article  CAS  Google Scholar 

  16. S. Kandemir, H.V. Atkinson, D.P. Weston, and S.V. Hainsworth: Thixoforming of A356/SiC and A356/TiB nanocomposites fabricated by a combination of green compact nanoparticle incorporation and ultrasonic treatment of the melted compact. Metall. Mater. Trans. A 45, 5782–5798 (2014).

    Article  CAS  Google Scholar 

  17. S.W. Youn, C.G. Kang, and P.K. Seo: Mechanical characteristics evaluation of hollow shape part with metal matrix composites fabricated by thixoforging process. J. Mater. Process. Technol. 130, 574–580 (2002).

    Article  Google Scholar 

  18. R. Koker, N. Altinkok, and A. Demir: Neural network based prediction of mechanical properties of particulate reinforced metal matrix composites using various training algorithms. Mater. Des. 28, 616–627 (2007).

    Article  CAS  Google Scholar 

  19. H. Yan, Y. Rao, and R. He: Morphological evolution of semi-solid Mg2Si/AM60 magnesium matrix composite produced by ultrasonic vibration process. J. Mater. Process. Technol. 214, 612–619 (2014).

    Article  CAS  Google Scholar 

  20. C.G. Kang, J.S. Choi, and K.H. Kim: The effect of strain rate on macroscopic behavior in the compression forming of semi-solid aluminum alloy. J. Mater. Process. Technol. 88, 159–168 (1999).

    Article  Google Scholar 

  21. T.G. Nguyen, M. SuéRy, and D. Favier: Influence of SiC particle volume fraction on the compressive behaviour of partially remelted Al, Si-based composites. Mater. Sci. Eng., A 183, 157–167 (1994).

    Article  CAS  Google Scholar 

  22. H. Yan and J.J. Wang: Thixotropic compression deformation behavior of SiCp/AZ61 magnesium matrix composites. Trans. Nonferrous Met. Soc. China 20, 811–814 (2010).

    Article  Google Scholar 

  23. C.P. Chen and C.Y.A. Tsao: Semi-solid deformation of non-dendritic structures—I. Phenomenological behavior. Acta Mater. 45, 1955–1968 (1997).

    Article  CAS  Google Scholar 

  24. S.Z. Shang, G.M. Lu, X.L. Tang, Z.X. Zhao, and C.M. Wu: Deformation mechanism and forming properties of 6061Al alloys during compression in semi-solid state. Trans. Nonferrous Met. Soc. China 20, 1725–1730 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors express their gratitude to the National Natural Science Foundation of China (51364035) and Innovation Special Funds for Graduate Student of Nanchang University (CX2015055) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, X., Yan, H. & Chen, X. Compression deformation behavior of semisolid Al2O3np reinforced 7075 aluminum matrix composites with high solid fraction. Journal of Materials Research 31, 3981–3990 (2016). https://doi.org/10.1557/jmr.2016.407

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.407

Navigation