Skip to main content

Advertisement

Log in

Functionalized activated carbon prepared form petroleum coke with high-rate supercapacitive performance

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Petroleum coke (PC) is a low-cost and potential carbon source for electrochemical energy storage. To expand the utilization of PC in supercapacitor, PC-based activated carbons (PCACs) with heteroatoms-doped were prepared from PC by KOH chemical activation. The as-prepared carbon exhibited a high surface area (2326.4 m2/g) and hierarchical micro-mesoporous structure, resulting in a high specific capacitance (421 F/g at 1 A/g) and excellent rate performance in KOH electrolyte (217 F/g at 50 A/g). Meanwhile, to improve the high-rate capacitive performance of PCACs in H2SO4 electrolyte, functionalized activated carbon (HQ/PCAC-4) was prepared by physically adsorbing the hydroquinone (HQ) on PCACs. The HQ/PCAC-4 showed an unprecedented capacitance value of 300.2 F/g even at an ultrahigh current density of 50 A/g. In addition, the energy density of HQ/PCAC-4 in H2SO4 electrolyte reached 19.5 W h/kg. The high energy density and excellent rate performance ensured their prosperous application in high-power energy storage system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
SCHEME 1

Similar content being viewed by others

References

  1. M.D. Stoller and R.S. Ruoff: Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 3 (9), 1294 (2010).

    Article  CAS  Google Scholar 

  2. L.L. Zhang and X. Zhao: Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38 (9), 2520 (2009).

    Article  CAS  Google Scholar 

  3. J. Yan, Q. Wang, T. Wei, and Z. Fan: Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 4 (4), 1300816 (2014).

    Article  Google Scholar 

  4. P. Simon and Y. Gogotsi: Materials for electrochemical capacitors. Nat. Mater. 7 (11), 845 (2008).

    Article  CAS  Google Scholar 

  5. S-M. Chen, R. Ramachandran, V. Mani, and R. Saraswathi: Recent advancements in electrode materials for the high performance electrochemical supercapacitors: A review. Int. J. Electrochem. Sci. 9, 4072 (2014).

    Google Scholar 

  6. H. Jiang, P.S. Lee, and C. Li: 3D carbon based nanostructures for advanced supercapacitors. Energy Environ. Sci. 6 (1), 41 (2013).

    Article  CAS  Google Scholar 

  7. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, and P-L. Taberna: Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313 (5794), 1760 (2006).

    Article  CAS  Google Scholar 

  8. C. Largeot, C. Portet, J. Chmiola, P-L. Taberna, Y. Gogotsi, and P. Simon: Relation between the ion size and pore size for an electric double-layer capacitor. J. Am. Chem. Soc. 130 (9), 2730 (2008).

    Article  CAS  Google Scholar 

  9. M. Zhong, E.K. Kim, J.P. McGann, S-E. Chun, J.F. Whitacre, M. Jaroniec, K. Matyjaszewski, and T. Kowalewski: Electrochemically active nitrogen-enriched nanocarbons with well-defined morphology synthesized by pyrolysis of self-assembled block copolymer. J. Am. Chem. Soc. 134 (36), 14846 (2012).

    Article  CAS  Google Scholar 

  10. F. Liu and D. Xue: An electrochemical route to quantitative oxidation of graphene frameworks with controllable C/O ratios and added pseudocapacitances. Chem.–Eur. J. 19 (32), 10716 (2013).

    Article  CAS  Google Scholar 

  11. C. Singh and A. Paul: Physisorbed hydroquinone on activated charcoal as a supercapacitor: An application of proton-coupled electron transfer. J. Phys. Chem. C 119 (21), 11382 (2015).

    Article  CAS  Google Scholar 

  12. Z-S. Wu, Y. Sun, Y-Z. Tan, S. Yang, X. Feng, and K. Müllen: Three-dimensional graphene-based macro-and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 134 (48), 19532 (2012).

    Article  CAS  Google Scholar 

  13. W. Xing, C. Huang, S. Zhuo, X. Yuan, G. Wang, D. Hulicova-Jurcakova, Z. Yan, and G. Lu: Hierarchical porous carbons with high performance for supercapacitor electrodes. Carbon 47 (7), 1715 (2009).

    Article  CAS  Google Scholar 

  14. D. Puthusseri, V. Aravindan, S. Madhavi, and S. Ogale: 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: The magic of in situ porogen formation. Energy Environ. Sci. 7 (2), 728 (2014).

    Article  CAS  Google Scholar 

  15. Y. Gao, Y.S. Zhou, M. Qian, X.N. He, J. Redepenning, P. Goodman, H.M. Li, L. Jiang, and Y.F. Lu: Chemical activation of carbon nano-onions for high-rate supercapacitor electrodes. Carbon 51, 52 (2013).

    Article  CAS  Google Scholar 

  16. C. Pittman, Jr, G-R. He, B. Wu, and S. Gardner: Chemical modification of carbon fiber surfaces by nitric acid oxidation followed by reaction with tetraethylenepentamine. Carbon 35 (3), 317 (1997).

    Article  CAS  Google Scholar 

  17. H.A. Andreas and B.E. Conway: Examination of the double-layer capacitance of an high specific-area C-cloth electrode as titrated from acidic to alkaline pHs. Electrochim. Acta 51 (28), 6510 (2006).

    Article  CAS  Google Scholar 

  18. K. Okajima, K. Ohta, and M. Sudoh: Capacitance behavior of activated carbon fibers with oxygen-plasma treatment. Electrochim. Acta 50 (11), 2227 (2005).

    Article  CAS  Google Scholar 

  19. D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, and T.J. Bandosz: Combined effect of nitrogen-and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19 (3), 438 (2009).

    Article  CAS  Google Scholar 

  20. T. Cai, W. Xing, Z. Liu, J. Zeng, Q. Xue, S. Qiao, and Z. Yan: Superhigh-rate capacitive performance of heteroatoms-doped double shell hollow carbon spheres. Carbon 86, 235 (2015).

    Article  CAS  Google Scholar 

  21. T. Lin, I-W. Chen, F. Liu, C. Yang, H. Bi, F. Xu, and F. Huang: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science 350 (6267), 1508 (2015).

    Article  CAS  Google Scholar 

  22. P. Simon and Y. Gogotsi: Capacitive energy storage in nanostructured carbon–electrolyte systems. Acc. Chem. Res. 46 (5), 1094 (2012).

    Article  Google Scholar 

  23. E. Raymundo-Pinero, K. Kierzek, J. Machnikowski, and F. Béguin: Relationship between the nanoporous texture of activated carbons and their capacitance properties in different electrolytes. Carbon 44 (12), 2498 (2006).

    Article  CAS  Google Scholar 

  24. D.W. Wang, F. Li, M. Liu, G.Q. Lu, and H.M. Cheng: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem. 120 (2), 379 (2008).

    Article  Google Scholar 

  25. Z. Lei, Z. Liu, H. Wang, X. Sun, L. Lu, and X. Zhao: A high-energy-density supercapacitor with graphene–CMK-5 as the electrode and ionic liquid as the electrolyte. J. Mater. Chem. A 1 (6), 2313 (2013).

    Article  CAS  Google Scholar 

  26. Z. Lei, N. Christov, and X. Zhao: Intercalation of mesoporous carbon spheres between reduced graphene oxide sheets for preparing high-rate supercapacitor electrodes. Energy Environ. Sci. 4 (5), 1866 (2011).

    Article  CAS  Google Scholar 

  27. J. Zhi, W. Zhao, X. Liu, A. Chen, Z. Liu, and F. Huang: Highly conductive ordered mesoporous carbon based electrodes decorated by 3D graphene and 1D silver nanowire for flexible supercapacitor. Adv. Funct. Mater., 24 (14), 2013 (2013).

    Article  Google Scholar 

  28. Y. Hou, L-p. Guo, and G. Wang: Synthesis and electrochemical performance of ordered mesoporous carbons with different pore characteristics for electrocatalytic oxidation of hydroquinone. J. Electroanal. Chem. 617 (2), 211 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by National Natural Science Foundation of China (21476264), Distinguished Young Scientist Foundation of Shandong Province (JQ201215), Taishan Scholar Foundation (ts20130929) and Fundamental Research Funds for the Central Universities (15CX05029A, 15CX08009A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Xing or Zifeng Yan.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Cai, T., Huang, J. et al. Functionalized activated carbon prepared form petroleum coke with high-rate supercapacitive performance. Journal of Materials Research 31, 3723–3730 (2016). https://doi.org/10.1557/jmr.2016.405

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.405

Navigation