Skip to main content
Log in

In situ characterization of fracture toughness and dynamics of nanocrystalline titanium nitride films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We designed a clamped beam bending test using a nanoindentation holder with help of transmission electron microscopy (TEM) and focused ion beam specimen fabrication. The microstructure evolution and crack propagation in nanocrystalline TiN were studied by electron imaging and load-displacement measurements during mechanical loading. By measuring the loads under which the crack starts and stops propagating and the time, we obtained the film’s fracture toughness using the finite element method and crack propagation speed. Among these, we identified three types of crack propagation pathways, namely bridging, intergranular and a mixed mode of transgranular and intergranular fracture, and the associated microstructure changes. The measured fracture toughness is in agreement with the reported values. Thus, our in situ TEM bending test provides the first direct measurement of fracture toughness in a TEM and a correlation of fracture toughness with fracture toughening mechanisms in nanocrystalline TiN. The method is general and can be applied to other nanocrystalline materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51(4), 427 (2006).

    Article  CAS  Google Scholar 

  2. H. Gleiter: Nanocrystalline materials. Prog. Mater Sci. 33(4), 223 (1989).

    Article  CAS  Google Scholar 

  3. K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51(19), 5743 (2003).

    Article  CAS  Google Scholar 

  4. J. Schiotz, F.D. Di Tolla, and K.W. Jacobsen: Softening of nanocrystalline metals at very small grain sizes. Nature 391(6667), 561 (1998).

    Article  Google Scholar 

  5. C. Suryanarayana: Nanocrystalline materials. Int. Mater. Rev. 40(2), 41 (1995).

    Article  CAS  Google Scholar 

  6. M.W. Chen, E. Ma, K.J. Hemker, H.W. Sheng, Y.M. Wang, and X.M. Cheng: Deformation twinning in nanocrystalline aluminum. Science 300(5623), 1275 (2003).

    Article  CAS  Google Scholar 

  7. J. Schiotz and K.W. Jacobsen: A maximum in the strength of nanocrystalline copper. Science 301(5638), 1357 (2003).

    Article  CAS  Google Scholar 

  8. I.W. Chen and X.H. Wang: Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature 404(6774), 168 (2000).

    Article  CAS  Google Scholar 

  9. M. Dao, L. Lu, R.J. Asaro, J.T.M. De Hosson, and E. Ma: Toward a quantitative understanding of mechanical behavior of nanocrystalline metals. Acta Mater. 55(12), 4041 (2007).

    Article  CAS  Google Scholar 

  10. S.C. Tjong and H. Chen: Nanocrystalline materials and coatings. Mater. Sci. Eng., R 45(1–2), 1 (2004).

    Article  CAS  Google Scholar 

  11. E.M. Bringa, A. Caro, Y.M. Wang, M. Victoria, J.M. McNaney, B.A. Remington, R.F. Smith, B.R. Torralva, and H. Van Swygenhoven: Ultrahigh strength in nanocrystalline materials under shock loading. Science 309(5742), 1838 (2005).

    Article  CAS  Google Scholar 

  12. L. Lu, M.L. Sui, and K. Lu: Superplastic extensibility of nanocrystalline copper at room temperature. Science 287(5457), 1463 (2000).

    Article  CAS  Google Scholar 

  13. Y. Wang, M. Chen, F. Zhou, and E. Ma: High tensile ductility in a nanostructured metal. Nature 419(6910), 912 (2002).

    Article  CAS  Google Scholar 

  14. Z. Shan, J.A. Knapp, D.M. Follstaedt, E.A. Stach, J.M.K. Wiezorek, and S.X. Mao: Inter- and intra-agglomerate fracture in nanocrystalline nickel. Phys. Rev. Lett. 100, 105502 (2008).

    Article  CAS  Google Scholar 

  15. D. Farkas, H. Van Swygenhoven, and P.M. Derlet: Intergranular fracture in nanocrystalline metals. Phys. Rev. B 66, 060101 (2002).

    Article  CAS  Google Scholar 

  16. A. Hasnaoui, H. Van Swygenhoven, and P.M. Derlet: Dimples on nanocrystalline fracture surfaces as evidence for shear plane formation. Science 300(5625), 1550 (2003).

    Article  CAS  Google Scholar 

  17. I. Szlufarska, A. Nakano, and P. Vashishta: A crossover in the mechanical response of nanocrystalline ceramics. Science 309(5736), 911 (2005).

    Article  CAS  Google Scholar 

  18. I.A. Ovid’ko and A.G. Sheinerman: Special strain hardening mechanism and nanocrack generation in nanocrystalline materials. Appl. Phys. Lett. 90, 171927 (2007).

    Article  CAS  Google Scholar 

  19. I.A. Ovid’ko and A.G. Sheinerman: Nanocrack generation at dislocation-disclination configurations in nanocrystalline metals and ceramics. Phys. Rev. B 77, 054109 (2008).

    Article  CAS  Google Scholar 

  20. I.A. Ovid’ko, A.G. Sheinerman, and E.C. Aifantis: Effect of cooperative grain boundary sliding and migration on crack growth in nanocrystalline solids. Acta Mater. 59(12), 5023 (2011).

    Article  CAS  Google Scholar 

  21. I.A. Ovid’ko, A.G. Sheinerman, and E.C. Alfantis: Stress-driven migration of grain boundaries and fracture processes in nanocrystalline ceramics and metals. Acta Mater. 56(12), 2718 (2008).

    Article  CAS  Google Scholar 

  22. V.A. Pozdnyakov and A.M. Glezer: Structural mechanisms of plastic deformation in nanocrystalline materials. Phys. Solid State 44(4), 732 (2002).

    Article  CAS  Google Scholar 

  23. G. Wei, B. Bhushan, and S.J. Jacobs: Nanoscale fatigue and fracture toughness measurements of multilayered thin film structures for digital micromirror devices. J. Vac. Sci. Technol., A 22(4), 1397 (2004).

    Article  CAS  Google Scholar 

  24. X.W. Gu, Z. Wu, Y-W. Zhang, D.J. Srolovitz, and J.R. Greer: Microstructure versus flaw: Mechanisms of failure and strength in nanostructures. Nano Lett. 13(11), 5703 (2013).

    Article  CAS  Google Scholar 

  25. S. Kumar, X. Li, A. Haque, and H. Gao: Is stress concentration relevant for nanocrystalline metals?Nano Lett. 11(6), 2510 (2011).

    Article  CAS  Google Scholar 

  26. J-H. Huang, Y-H. Chen, A-N. Wang, G-P. Yu, and H. Chen: Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method. Surf. Coat. Technol. 258, 211 (2014).

    Article  CAS  Google Scholar 

  27. A-N. Wang, G-P. Yu, and J-H. Huang: Fracture toughness measurement on TiN hard coatings using internal energy induced cracking. Surf. Coat. Technol. 239, 20 (2014).

    Article  CAS  Google Scholar 

  28. S. Zhang, D. Sun, Y.Q. Fu, and H.J. Du: Toughness measurement of thin films: A critical review. Surf. Coat. Technol. 198(1–3), 74 (2005).

    Article  CAS  Google Scholar 

  29. B.N. Jaya, V. Jayaram, and S.K. Biswas: A new method for fracture toughness determination of graded (Pt,Ni)Al bond coats by microbeam bend tests. Philos. Mag. 92(25–27), 3326 (2012).

    Article  CAS  Google Scholar 

  30. S. Liu, J.M. Wheeler, P.R. Howie, X.T. Zeng, J. Michler, and W.J. Clegg: Measuring the fracture resistance of hard coatings. Appl. Phys. Lett. 102, 171907 (2013).

    Article  CAS  Google Scholar 

  31. K. Matoy, H. Schonherr, T. Detzel, T. Schoberl, R. Pippan, C. Motz, and G. Dehm: A comparative micro-cantilever study of the mechanical behavior of silicon based passivation films. Thin Solid Films 518(1), 247 (2009).

    Article  CAS  Google Scholar 

  32. M.G. Mueller, V. Pejchal, G. Žagar, A. Singh, M. Cantoni, and A. Mortensen: Fracture toughness testing of nanocrystalline alumina and fused quartz using chevron-notched microbeams. Acta Mater. 86, 385 (2015).

    Article  CAS  Google Scholar 

  33. S. Johansson, J.Å. Schweitz, L. Tenerz, and J. Tiren: Fracture testing of silicon microelements in situ in a scanning electron microscope. J. Appl. Phys. 63(10), 4799 (1988).

    Article  CAS  Google Scholar 

  34. A.A. Yawny and J.E. Perez Ipina: In situ fracture toughness measurement using scanning electron microscopy. J. Test. Eval. 31(5), 413 (2003).

    CAS  Google Scholar 

  35. X. Zhang and S. Zhang: A Microbridge method in tensile testing of substrate for fracture toughness of thin films. Nanosci. Nanotechnol. Lett. 3(6), 735 (2011).

    Article  CAS  Google Scholar 

  36. P. Chen and W-Y. Wu: The use of sputter deposited TiN thin film as a surface conducting layer on the counter electrode of flexible plastic dye-sensitized solar cells. Surf. Coat. Technol. 231, 140 (2013).

    Article  CAS  Google Scholar 

  37. A-N. Wang, C-P. Chuang, G-P. Yu, and J-H. Huang: Determination of average x-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ x-ray diffraction method. Surf. Coat. Technol. 262, 40 (2015).

    Article  CAS  Google Scholar 

  38. C.H. Ma, J.H. Huang, and H. Chen: Nanohardness of nanocrystalline TiN thin films. Surf. Coat. Technol. 200(12–13), 3868 (2006).

    Article  CAS  Google Scholar 

  39. S. Chan, I. Tuba, and W. Wilson: On the finite element method in linear fracture mechanics. Eng. Fract. Mech. 2(1), 1 (1970).

    Article  Google Scholar 

  40. R.W. Hertzberg, R.P. Vinci, and J.L. Hertzberg: Deformation and Fracture Mechanics of Engineering Materials, 5th ed. (Wiley, New York, 2013).

    Google Scholar 

  41. S. Massl, W. Thomma, J. Keckes, and R. Pippan: Investigation of fracture properties of magnetron-sputtered TiN films by means of a FIB-based cantilever bending technique. Acta Mater. 57(6), 1768 (2009).

    Article  CAS  Google Scholar 

  42. M.P. Manoharan, A.V. Desai, and M.A. Haque: Fracture toughness characterization of advanced coatings. J. Micromech. Microeng. 19(11), 115004 (2009).

    Article  CAS  Google Scholar 

  43. S. Kataria, S.K. Srivastava, P. Kumar, G. Srinivas, J. Siju, J. Khan, D.V.S. Rao, and H.C. Barshilia: Nanocrystalline TiN coatings with improved toughness deposited by pulsing the nitrogen flow rate. Surf. Coat. Technol. 206(19–20), 4279 (2012).

    Article  CAS  Google Scholar 

  44. B.N. Jaya and V. Jayaram: Crack stability in edge-notched clamped beam specimens: Modeling and experiments. Int. J Fract. 188(2), 213 (2014).

    Article  CAS  Google Scholar 

  45. K.H. Kim, H. Xing, J.M. Zuo, P. Zhang, and H. Wang: TEM based high resolution and low-dose scanning electron nanodiffraction technique for nanostructure imaging and analysis. Micron 71, 39–45 (2015).

    Article  CAS  Google Scholar 

  46. X.Z. Liao, F. Zhou, E.J. Lavernia, S.G. Srinivasan, M.I. Baskes, D.W. He, and Y.T. Zhu: Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Appl. Phys. Lett. 83(4), 632 (2003).

    Article  CAS  Google Scholar 

  47. H. Van Swygenhoven, P.M. Derlet, and A. Hasnaoui: Atomic mechanism for dislocation emission from nanosized grain boundaries. Phys. Rev. B 66(2), 024101 (2002).

    Article  CAS  Google Scholar 

  48. H. Van Swygenhoven and J.R. Weertman: Deformation in nanocrystalline metals. Mater. Today 9(5), 24 (2006).

    Article  Google Scholar 

  49. K.S. Kumar, S. Suresh, M.F. Chisholm, J.A. Horton, and P. Wang: Deformation of electrodeposited nanocrystalline nickel. Acta Mater. 51(2), 387 (2003).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work is supported by DOE BES (Grant No. DEFG02-01ER45923). Electron microscopy was carried out at the Center for Microanalysis of Materials at the Frederick Seitz Materials Research Laboratory of University of Illinois at Urbana–Champaign. The TiN specimen was prepared by Ms. An-Ni Wang with Department of Engineering and System Science, National Tsing Hua University at Hsinchu, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Min Zuo.

Additional information

Supplementary Material

To view supplementary material for this article, please visit https://doi.org/10.1557/jmr.2016.4.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Huang, JH. & Zuo, JM. In situ characterization of fracture toughness and dynamics of nanocrystalline titanium nitride films. Journal of Materials Research 31, 370–379 (2016). https://doi.org/10.1557/jmr.2016.4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.4

Navigation