Abstract
A scalable approach for synthesis of ultra-thin (<10 nm) transition metal dichalcogenides (TMD) films on stretchable polymeric materials is presented. Specifically, magnetron sputtering from pure TMD targets, such as MoS2 and WS2, was used for growth of amorphous precursor films at room temperature on polydimethylsiloxane substrates. Stacks of different TMD films were grown upon each other and integrated with optically transparent insulating layers such as boron nitride. These precursor films were subsequently laser annealed to form high quality, few-layer crystalline TMDs. This combination of sputtering and laser annealing is commercially scalable and lends itself well to patterning. Analysis by Raman spectroscopy, scanning probe, optical, and transmission electron microscopy, and x-ray photoelectron spectroscopy confirm our assertions and illustrate annealing mechanisms. Electrical properties of simple devices built on flexible substrates are correlated to annealing processes. This new approach is a significant step toward commercial-scale stretchable 2D heterostructured nanoelectronic devices.
Similar content being viewed by others
References
D. Akinwande, N. Petrone, and J. Hone: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).
R. Fivaz and R. Mooser: Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163, 743–755 (1967).
T. Böker, R. Severin, A. Müller, C. Janowitz, R. Manzke, D. Voß, P. Krüger, A. Mazur, and J. Pollmann: Band structure of MoS2, MoSe2, and a-MoTe2: Angle-resolved photoelectron spectroscopy and Ab initio calculations. Phys. Rev. B 64, 235305 (2001).
K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz: Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).
G-H. Lee, Y-J. Yu, X. Cui, N. Petrone, C-H. Lee, M.S. Choi, D-Y. Lee, C. Lee, W.J. Yoo, and K. Watanabe: Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7, 7931–7936 (2013).
A.K. Geim and I.V. Grigorieva: van der Waals heterostructures. Nature 499, 419–425 (2013).
Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).
J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, and R.J. Smith: Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).
L. Niu, K. Li, H. Zhen, Y-S. Chui, W. Zhang, F. Yan, and Z. Zheng: Salt-assisted high-throughput synthesis of single- and few-layer transition metal dichalcogenides and their application in organic solar cells. Small 10, 4651–4657 (2014).
R.J. Smith, P.J. King, M. Lotya, C. Wirtz, U. Khan, S. De, A. O’Neill, G.S. Duesberg, J.C. Grunlan, and G. Moriarty: Large-scale exfoliation of inorganic layered compounds in aqueous surfactant solutions. Adv. Mater. 23, 3944–3948 (2011).
Y. Yu, C. Li, Y. Liu, L. Su, Y. Zhang, and L. Cao: Controlled scalable synthesis of uniform, high-quality monolayer and few-layer MoS2 films. Sci. Rep. 3, 1866–1871 (2013).
Y-H. Lee, X-Q. Zhang, W. Zhang, M-T. Chang, C-T. Lin, K-D. Chang, Y-C. Yu, Y.T-W. Wang, C-S. Chang, and L-J. Li: Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 24, 2320–2325 (2012).
Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, and J. Lou: Large-area vapor-phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8, 966–971 (2012).
Y-H. Lee, L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C-T. Lin, J-K. Huang, M-T. Chang, and C-S. Chang: Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett. 13, 1852–1857 (2013).
G.A. Salvatore, N. Münzenrieder, C. Barraud, L. Petti, C. Zysset, L. Büthe, K. Ensslin, and G. Tröster: Fabrication and transfer of flexible few-layer MoS2 thin film transistors to any arbitrary substrate. ACS Nano 7, 8809–8815 (2013).
X. Wang, H. Feng, Y. Wu, and L. Jiao: Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 135, 5304–5307 (2013).
C. Muratore, J.J. Hu, B. Wang, M.A. Haque, J.E. Bultman, M.L. Jespersen, P.J. Shamberger, M.E. McConney, R.D. Naguy, and A.A. Voevodin: Continuous ultra-thin MoS2 films grown by low-temperature physical vapor deposition. Appl. Phys. Lett. 104, 261604 (2014).
J. Tao, J. Chai, X. Lu, L.M. Wong, T.I. Wong, J. Pan, Q. Xiong, D. Chi, and S. Wang: Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale 7, 2497–2503 (2015).
T. Alam, B. Wang, R. Pulavarthy, M.A. Haque, C. Muratore, N. Glavin, A.K. Roy, and A.A. Voevodin: Domain engineering of physical vapor deposited two-dimensional materials. Appl. Phys. Lett. 105, 213110 (2014).
N. Bowden, S. Brittain, A.G. Evans, J.W. Hutchinson, and G.M. Whitesides: Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393, 146–149 (1998).
W.T.S. Huck, N. Bowden, P. Onck, T. Pardoen, J.W. Hutchinson, and G.M. Whitesides: Ordering of spontaneously formed buckles on planar surfaces. Langmuir 16, 3497–3501 (2000).
E. Cerda and L. Mahadevan: Geometry and physics of wrinkling. Phys. Rev. Lett. 90, 074302–1–074302–4 (2003).
S.P. Lacour, S. Wagner, Z. Huang, and Z. Suo: Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404–2406 (2003).
H.Y. Yu, C. Kim, and S.C. Sanday: Buckle formation in vacuum-deposited thin films. Thin Solid Films 196, 229–233 (1991).
J.A. Rogers, T. Someya, and Y. Huang: Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).
C. Lee, H. Yan, L.E. Brus, T.F. Heinz, J. Hone, and S. Ryu: Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4, 2695–2700 (2010).
A. Castellanos-Gomez, M. Barkelid, A.M. Goossens, V.E. Calado, H.S.J. van der Zant, and G.A. Steele: Laser-thinning of MoS2: On demand generation of a single-layer semiconductor. Nano Lett. 12, 3187–3192 (2012).
R.G. Dickinson and L. Pauling: The Crystal structure of molybdenite. J. Am. Chem. Soc. 45, 1466–1471 (1923).
C.A. Papageorgopoulos and W. Jaegermann: Li intercalation across and along the van der Waals surfaces of MoS2(0001). Surf. Sci. 338, 83–93 (1995).
G. Eda, H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla: Photoluminescence from chemically exfoliated MoS2. Nano Lett. 11, 5111–5116 (2011).
C. Muratore, V. Varshney, J.J. Gengler, J.J. Hu, A.K. Roy, B.L. Farmer, and A.A. Voevodin: Thermal anisotropy in nano-crystalline MoS2 thin films. Phys. Chem. Chem. Phys. 16, 1008–1014 (2014).
C. Muratore, V. Varshney, J.J. Gengler, J.E. Bultman, J.J. Hu, T.M. Smith, P.J. Shamberger, B. Qiu, X. Ruan, A.K. Roy, and A.A. Voevodin: Cross-plane thermal properties of transition metal dichalcogenides. Appl. Phys. Lett. 102, 081604 (2013).
ACKNOWLEDGMENTS
Financial support from Air Force Office of Scientific Research, Complex Materials and Devices program (15RXCOR184) is gratefully acknowledged. CM gratefully acknowledges support from Air Force Research Laboratory funded DAGSI program and AFRL Materials and Manufacturing Directorate Laboratory Director’s Funds to sponsor this work. CM would also like to acknowledge Advanced Energy Industries Incorporated for use of a Pinnacle Plus pulsed power supply for thin film growth. All authors thank Art Safriet for his assistance in development and fabrication of equipment used in this work.
Author information
Authors and Affiliations
Corresponding author
Additional information
This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.
A previous error in this article has been corrected, see https://doi.org/10.1557/jmr.2016.129.
Rights and permissions
About this article
Cite this article
McConney, M.E., Glavin, N.R., Juhl, A.T. et al. Direct synthesis of ultra-thin large area transition metal dichalcogenides and their heterostructures on stretchable polymer surfaces. Journal of Materials Research 31, 967–974 (2016). https://doi.org/10.1557/jmr.2016.36
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2016.36