Skip to main content
Log in

Atomic stacking and van-der-Waals bonding in GeTe–Sb2Te3 superlattices

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

GeTe–Sb2Te3 superlattices have attracted major interest in the field of phase-change memories due to their improved properties compared with their mixed counterparts. However, their crystal structure and resistance-switching mechanism are currently not clearly understood. In this work epitaxial GeTe–Sb2Te3 superlattices have been grown with different techniques and were thoroughly investigated to unravel the structure of their crystalline state with particular focus on atomic stacking and van-der-Waals bonding. It is found that, due to the bonding anisotropy of GeTe and Sb2Te3, the materials intermix to form van-der-Waals heterostructures of Sb2Te3 and stable GeSbTe. Moreover, it is found through annealing experiments that intermixing is stronger for higher temperatures. The resulting ground state structure contradicts the dominant ab-initio results in the literature, requiring revisions of the proposed switching mechanisms. Overall, these findings shed light on the bonding nature of GeTe–Sb2Te3 superlattices and open a way to the understanding of their functionality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. S.R. Ovshinsky: Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450 (1968).

    Article  Google Scholar 

  2. M. Wuttig and N. Yamada: Phase-change materials for rewriteable data storage. Nat. Mater. 6, 824 (2007).

    Article  CAS  Google Scholar 

  3. J. Orava, A.L. Greer, B. Gholipour, D.W. Hewak, and C.E. Smith: Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nat. Mater. 11, 279 (2012).

    Article  CAS  Google Scholar 

  4. D. Loke, T.H. Lee, W.J. Wang, L.P. Shi, R. Zhao, Y.C. Yeo, T.C. Chong, and S.R. Elliott: Breaking the speed limits of phase-change memory. Science 336, 1566 (2012).

    Article  CAS  Google Scholar 

  5. S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y.C. Chen, R.M. Shelby, M. Salinga, D. Krebs, S-H. Chen, H-L. Lung, and C.H. Lam: Phase-change random access memory: A scalable technology. IBM J. Res. Dev. 52, 465 (2008).

    Article  CAS  Google Scholar 

  6. G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R.S. Shenoy: Phase change memory technology. J. Vac. Sci. Technol., B 28, 223 (2010).

    Article  CAS  Google Scholar 

  7. P. Hosseini, C.D. Wright, and H. Bhaskaran: An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511, 206 (2014).

    Article  CAS  Google Scholar 

  8. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C.D. Wright, H. Bhaskaran, and W.H.P. Pernice: Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 9, 725 (2015).

    Article  CAS  Google Scholar 

  9. C. Ríos, P. Hosseini, R.A. Taylor, and H. Bhaskaran: Color depth modulation and resolution in phase-change material nanodisplays. Adv. Mater. 28, 4720 (2016). doi: https://doi.org/10.1002/adma.201506238.

    Article  CAS  Google Scholar 

  10. T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, and M. Wuttig: Disorder-induced localization in crystalline phase-change materials. Nat. Mater. 10, 202 (2011).

    Article  CAS  Google Scholar 

  11. A.L. Lacaita and A. Redaelli: The race of phase change memories to nanoscale storage and applications. Microelectron. Eng. 109, 351 (2013).

    Article  CAS  Google Scholar 

  12. M. Boniardi, A. Redaelli, C. Cupeta, F. Pellizzer, L. Crespi, G. D’Arrigo, A.L. Lacaita, and G. Servalli: Optimization metrics for phase change memory (PCM) cell architectures. In Electron Devices Meeting (IEDM), 2014 IEEE International, 2014; p. 29.1.1. doi: https://doi.org/10.1109/IEDM.2014.7047131.

    Chapter  Google Scholar 

  13. T.C. Chong, L.P. Shi, R. Zhao, P.K. Tan, J.M. Li, H.K. Lee, X.S. Miao, A.Y. Du, and C.H. Tung: Phase change random access memory cell with superlattice-like structure. Appl. Phys. Lett. 88, 122114 (2006).

    Article  CAS  Google Scholar 

  14. R.E. Simpson, P. Fons, A.V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga: Interfacial phase-change memory. Nat. Nanotechnol. 6, 501 (2011).

    Article  CAS  Google Scholar 

  15. J. Tominaga, P. Fons, A. Kolobov, T. Shima, T.C. Chong, R. Zhao, H.K. Lee, and L. Shi: Role of Ge switch in phase transition: Approach using atomically controlled GeTe/Sb2Te3 superlattice. Jpn. J. Appl. Phys. 47, 5763 (2008).

    Article  CAS  Google Scholar 

  16. J. Tominaga, T. Shima, P. Fons, R. Simpson, M. Kuwahara, and A. Kolobov: What is the origin of activation energy in phase-change film? Jpn. J. Appl. Phys. 48, 03A053 (2009).

    Article  CAS  Google Scholar 

  17. J. Momand, R. Wang, J.E. Boschker, M.A. Verheijen, R. Calarco, and B.J. Kooi: Interface formation of two- and three-dimensionally bonded materials in the case of GeTe–Sb2Te3 superlattices. Nanoscale 7, 19136 (2015).

    Article  CAS  Google Scholar 

  18. B. Casarin, A. Caretta, J. Momand, B.J. Kooi, M.A. Verheijen, V. Bragaglia, R. Calarco, M. Chukalina, X. Yu, J. Robertson, F.R.L. Lange, M. Wuttig, A. Redaelli, E. Varesi, F. Parmigiani, and M. Malvestuto: Revisiting the local structure in Ge–Sb–Te based chalcogenide superlattices. Sci. Rep. 6, 22353 (2016).

    Article  CAS  Google Scholar 

  19. R. Wang, V. Bragaglia, J.E. Boschker, and R. Calarco: Intermixing during epitaxial growth of van der Waals bonded nominal GeTe/Sb2Te3 superlattices. Cryst. Growth Des. 16, 3596 (2016). doi: https://doi.org/10.1021/acs.cgd.5b01714.

    Article  CAS  Google Scholar 

  20. B.J. Kooi and J.T.M.D. Hosson: Electron diffraction and high-resolution transmission electron microscopy of the high temperature crystal structures of GexSb2Te3+ x(x = 1,2,3) phase change material. J. Appl. Phys. 92, 3584 (2002).

    Article  CAS  Google Scholar 

  21. T. Matsunaga and N. Yamada: Structural investigation of GeSb2Te4: A high-speed phase-change material. Phys. Rev. B 69, 104111 (2004).

    Article  CAS  Google Scholar 

  22. T. Matsunaga, N. Yamada, and Y. Kubota: Structures of stable and metastable Ge2Sb2Te5, an intermetallic compound in GeTe–Sb2Te3 pseudobinary systems. Acta Crystallogr. B 60, 685 (2004).

    Article  CAS  Google Scholar 

  23. T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, and M. Takata: Structural investigation of Ge3Sb2Te6, an intermetallic compound in the GeTe–Sb2Te3 homologous series. Appl. Phys. Lett. 90, 161919 (2007).

    Article  CAS  Google Scholar 

  24. J. Goldak, C.S. Barrett, D. Innes, and W. Youdelis: Structure of alpha GeTe. J. Chem. Phys. 44, 3323 (1966).

    Article  CAS  Google Scholar 

  25. T.L. Anderson and H.B. Krause: Refinement of the Sb2Te3 and Sb2Te2Se structures and their relationship to nonstoichiometric Sb2Te3−ySey compounds. Acta Crystallogr. B 30, 1307 (1974).

    Article  CAS  Google Scholar 

  26. A.K. Geim and I.V. Grigorieva: Van der Waals heterostructures. Nature 499, 419 (2013).

    Article  CAS  Google Scholar 

  27. N. Yamada and T. Matsunaga: Structure of laser-crystallized Ge2Sb2+ xTe5 sputtered thin films for use in optical memory. J. Appl. Phys. 88, 7020 (2000).

    Article  CAS  Google Scholar 

  28. M. Wuttig, D. Lüsebrink, D. Wamwangi, W. Wełnic, M. Gilleßen, and R. Dronskowski: The role of vacancies and local distortions in the design of new phase-change materials. Nat. Mater. 6, 122 (2007).

    Article  CAS  Google Scholar 

  29. V. Bragaglia, F. Arciprete, W. Zhang, A.M. Mio, E. Zallo, K. Perumal, A. Giussani, S. Cecchi, J.E. Boschker, H. Riechert, S. Privitera, E. Rimini, R. Mazzarello, and R. Calarco: Metal—Insulator transition driven by vacancy ordering in GeSbTe phase change materials. Sci. Rep. 6, 23843 (2016).

    Article  CAS  Google Scholar 

  30. W. Zhang, A. Thiess, P. Zalden, R. Zeller, P.H. Dederichs, J-Y. Raty, M. Wuttig, S. Blügel, and R. Mazzarello: Role of vacancies in metal–insulator transitions of crystalline phase-change materials. Nat. Mater. 11, 952 (2012).

    Article  CAS  Google Scholar 

  31. Y. Jiang, Y.Y. Sun, M. Chen, Y. Wang, Z. Li, C. Song, K. He, L. Wang, X. Chen, Q-K. Xue, X. Ma, and S.B. Zhang: Fermi-Level tuning of epitaxial Sb2Te3 thin films on graphene by regulating intrinsic defects and substrate transfer doping. Phys. Rev. Lett. 108, 66809 (2012).

    Article  CAS  Google Scholar 

  32. A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, and T. Uruga: Understanding the phase-change mechanism of rewritable optical media. Nat. Mater. 3, 703 (2004).

    Article  CAS  Google Scholar 

  33. J. Tominaga, A.V. Kolobov, P. Fons, T. Nakano, and S. Murakami: Ferroelectric order control of the Dirac-semimetal phase in GeTe–Sb2Te3 superlattices. Adv. Mater. Interfaces 1, 1300027 (2014).

    Article  CAS  Google Scholar 

  34. T. Ohyanagi, M. Kitamura, M. Araidai, S. Kato, N. Takaura, and K. Shiraishi: GeTe sequences in superlattice phase change memories and their electrical characteristics. Appl. Phys. Lett. 104, 252106 (2014).

    Article  CAS  Google Scholar 

  35. X. Yu and J. Robertson: Modeling of switching mechanism in GeSbTe chalcogenide superlattices. Sci. Rep. 5, 12612 (2015).

    Article  CAS  Google Scholar 

  36. J.E. Boschker, J. Momand, V. Bragaglia, R. Wang, K. Perumal, A. Giussani, B.J. Kooi, H. Riechert, and R. Calarco: Surface reconstruction-induced coincidence lattice formation between two-dimensionally bonded materials and a three-dimensionally bonded substrate. Nano Lett. 14, 3534 (2014).

    Article  CAS  Google Scholar 

  37. A.V. Kolobov, J. Tominaga, P. Fons, and T. Uruga: Local structure of crystallized GeTe films. Appl. Phys. Lett. 82, 382 (2003).

    Article  CAS  Google Scholar 

  38. J. Tominaga, A.V. Kolobov, P.J. Fons, X. Wang, Y. Saito, T. Nakano, M. Hase, S. Murakami, J. Herfort, and Y. Takagaki: Giant multiferroic effects in topological GeTe–Sb2Te3 superlattices. Sci. Technol. Adv. Mater. 16, 14402 (2015).

    Article  CAS  Google Scholar 

  39. Y. Saito, P. Fons, A.V. Kolobov, and J. Tominaga: Self-organized van der Waals epitaxy of layered chalcogenide structures. Phys. Status Solidi B 252, 2151 (2015). doi: https://doi.org/10.1002/pssb.201552335.

    Article  CAS  Google Scholar 

  40. A. Koma: Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 201–202, 236 (1999).

    Article  Google Scholar 

  41. U. Ross, A. Lotnyk, E. Thelander, and B. Rauschenbach: Microstructure evolution in pulsed laser deposited epitaxial Ge–Sb–Te chalcogenide thin films. J. Alloys Compd. 676, 582 (2016).

    Article  CAS  Google Scholar 

  42. F. Katmis, R. Calarco, K. Perumal, P. Rodenbach, A. Giussani, M. Hanke, A. Proessdorf, A. Trampert, F. Grosse, R. Shayduk, R. Campion, W. Braun, and H. Riechert: Insight into the growth and control of single-crystal layers of Ge–Sb–Te phase-change material. Cryst. Growth Des. 11, 4606 (2011).

    Article  CAS  Google Scholar 

  43. K. Perumal: Epitaxial Growth of Ge–Sb–Te Based Phase Change Materials (Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, Berlin, 2013).

    Google Scholar 

  44. R. Venkatasubramanian: Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61, 3091 (2000).

    Article  CAS  Google Scholar 

  45. J.C. Caylor, K. Coonley, J. Stuart, T. Colpitts, and R. Venkatasubramanian: Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Appl. Phys. Lett. 87, 23105 (2005).

    Article  CAS  Google Scholar 

  46. A.V. Kolobov, M. Krbal, P. Fons, J. Tominaga, and T. Uruga: Distortion-triggered loss of long-range order in solids with bonding energy hierarchy. Nat. Chem. 3, 311 (2011).

    Article  CAS  Google Scholar 

  47. R.E. Simpson, P. Fons, A.V. Kolobov, M. Krbal, and J. Tominaga: Enhanced crystallization of GeTe from an Sb2Te3 template. Appl. Phys. Lett. 100, 21911 (2012).

    Article  CAS  Google Scholar 

  48. X. Zhou, J. Kalikka, X. Ji, L. Wu, Z. Song, and R.E. Simpson: Phase-change memory materials by design: A strain engineering approach. Adv. Mater. 28, 3007 (2016).

    Article  CAS  Google Scholar 

  49. K. Momma and F. Izumi: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by EU within the FP7 project PASTRY (GA 317746). Solliance is acknowledged for funding the HRSTEM facility.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jamo Momand or Bart J. Kooi.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Momand, J., Lange, F.R.L., Wang, R. et al. Atomic stacking and van-der-Waals bonding in GeTe–Sb2Te3 superlattices. Journal of Materials Research 31, 3115–3124 (2016). https://doi.org/10.1557/jmr.2016.334

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.334

Navigation