Skip to main content
Log in

Prediction of residual stress components and their directions from pile-up morphology: An experimental study

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Indentation method has been widely used in the measurement of material mechanical properties and residual stress for its simple, fast and nondestructive characteristics. In the indentation test, because of the plastic deformation of the material, the material accumulation and subsidence occurs around the indentation. It is found that the deformation amount of the indentation, especially the maximum pile-up around the indentation after unloading, is related to the magnitude and direction of the residual stress. In this paper, an experimental study on the pile-up morphology around an indentation for determining the direction and magnitude of residual stress is reported. Nonsymmetrical morphology of spherical indenting deformation on artificially strained steel specimen was measured with a laser scanning confocal system. A unique relationship between pile-up after unloading and biaxial residual stress was set up based on the experimental results. The direction and components of nonequibiaxial residual stress can be determined by the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. N. Tebedge, G. Alpsten, and L. Tall: Residual-stress measurement by the sectioning method. Exp. Mech. 13(2), 88 (1973).

    Article  Google Scholar 

  2. D. Nelson and J. McCrickerd: Residual-stress determination through combined use of holographic interferometry and blind-hole drilling. Exp. Mech. 26(4), 371 (1986).

    Article  Google Scholar 

  3. J. Gauthier, T. Krause, and D. Atherton: Measurement of residual stress in steel using the magnetic Barkhausen noise technique. NDT&E Int. 31(1), 23 (1998).

    Article  CAS  Google Scholar 

  4. R. Gou, Y. Zhang, X. Xu, L. Sun, and Y. Yang: Residual stress measurement of new and in-service X70 pipelines by x-ray diffraction method. NDT&E Int. 44(5), 387 (2011).

    Article  CAS  Google Scholar 

  5. E. Hu, Y. He, and Y. Chen: Experimental study on the surface stress measurement with Rayleigh wave detection technique. Appl. Acoust. 70(2), 356 (2009).

    Article  Google Scholar 

  6. M. Doerner and W. Nix: A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1(4), 601 (1986).

    Article  Google Scholar 

  7. W.C. Oliver and G.M. Pharr: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).

    Article  CAS  Google Scholar 

  8. J. Field and M. Swain: Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10(1), 101 (1995).

    Article  CAS  Google Scholar 

  9. M. Swain: Mechanical property characterisation of small volumes of brittle materials with spherical tipped indenters. Mater. Sci. Eng., A 253(1), 160 (1998).

    Article  Google Scholar 

  10. M. Dao, N. Chollacoop, K. Van Vliet, T. Venkatesh, and S. Suresh: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Mater. 49(19), 3899 (2001).

    Article  CAS  Google Scholar 

  11. S. Suresh and A. Giannakopoulos: A new method for estimating residual stresses by instrumented sharp indentation. Acta Mater. 46(16), 5755 (1998).

    Article  CAS  Google Scholar 

  12. X. Chen, J. Yan, and A.M. Karlsson: On the determination of residual stress and mechanical properties by indentation. Mater. Sci. Eng., A 416(1), 139 (2006).

    Article  Google Scholar 

  13. J-I. Jang, D. Son, Y-H. Lee, Y. Choi, and D. Kwon: Assessing welding residual stress in A335 P12 steel welds before and after stress-relaxation annealing through instrumented indentation technique. Scr. Mater. 48(6), 743 (2003).

    Article  CAS  Google Scholar 

  14. Y.B. Gerbig, S.J. Stranick, and R.F. Cook: Measurement of residual stress field anisotropy at indentations in silicon. Scr. Mater. 63(5), 512 (2010).

    Article  CAS  Google Scholar 

  15. J. Swadener, B. Taljat, and G. Pharr: Measurement of residual stress by load and depth sensing indentation with spherical indenters. J. Mater. Res. 16(07), 2091 (2001).

    Article  CAS  Google Scholar 

  16. Y-H. Lee and D. Kwon: Estimation of biaxial surface stress by instrumented indentation with sharp indenters. Acta Mater. 52(6), 1555 (2004).

    Article  CAS  Google Scholar 

  17. Y-H. Lee, K. Takashima, Y. Higo, and D. Kwon: Prediction of stress directionality from pile-up morphology around remnant indentation. Scr. Mater. 51(9), 887 (2004).

    Article  CAS  Google Scholar 

  18. D.I. Kwon, J.S. Lee, J.H. Han, G.J. Lee, Y.H. Lee, M.J. Choi, and K.H. Kim: Residual stress estimation with identification of stress directionality using instrumented indentation technique. Key Eng. Mater. 345, 1125 (2007).

    Google Scholar 

  19. A. Bolshakov and G. Pharr: Influences of pileup on the measurement of mechanical properties by load and depth sensing indentation techniques. J. Mater. Res. 13(4), 1049 (1998).

    Article  CAS  Google Scholar 

  20. M. Khan, S. Hainsworth, M. Fitzpatrick, and L. Edwards: A combined experimental and finite element approach for determining mechanical properties of aluminium alloys by nanoindentation. Comput. Mater. Sci. 49(4), 751 (2010).

    Article  CAS  Google Scholar 

  21. S.H. Kim, B.W. Lee, Y. Choi, and D. Kwon: Quantitative determination of contact depth during spherical indentation of metallic materials—A FEM study. Mater. Sci. Eng., A 415(1), 59 (2006).

    Article  Google Scholar 

  22. J.H. Underwood: Residual-stress measurement using surface displacements around an indentation. Exp. Mech. 13(9), 373 (1973).

    Article  Google Scholar 

  23. Y. Bisrat and S. Roberts: Residual stress measurement by Hertzian indentation. Mater. Sci. Eng., A 288(2), 148 (2000).

    Article  Google Scholar 

  24. L. Shen, Y. He, D. Liu, Q. Gong, B. Zhang, and J. Lei: A novel method for determining surface residual stress components and their directions in spherical indentation. J. Mater. Res. 30(08), 1078 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the NSFC (Nos 11272131, 11472114).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, L., He, Y., Liu, D. et al. Prediction of residual stress components and their directions from pile-up morphology: An experimental study. Journal of Materials Research 31, 2392–2397 (2016). https://doi.org/10.1557/jmr.2016.270

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.270

Navigation