Skip to main content
Log in

Effect of carbon equivalent on thermal and mechanical properties of compacted graphite cast iron

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of carbon equivalent on thermal and mechanical properties of compacted graphite cast irons were investigated at ambient temperature, 300 and 500 °C, respectively. The group implied the change of carbon content to control the carbon equivalent. The results indicated that with the increasing carbon equivalent from 4.43 to 4.74, the graphite count increase. The thermal conductivity was 48.64, 44.55, 49.04, and 50.36 W/mK for carbon equivalent about 4.43–4.74 of compacted graphite cast irons at ambient temperature, respectively. With an increase in temperature, the thermal conductivity decrease. Moreover, with the increasing carbon equivalent, the tensile strength and yield strength increase initially, and then decrease at ambient temperature, 300 and 500 °C, respectively. With an increase in temperature, the tensile strength and yield strength decrease. Characterization of fracture surface indicated that the mixed ductile-brittle fracture mode prevailed in the compacted graphite cast irons with different carbon equivalents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. M. Bazdar, H.R. Abbasi, A.H. Yaghtin, and J. Rassizadehghani: Effect of sulfur on graphite aspect ratio and tensile properties in compacted graphite irons. J. Mater. Process. Technol. 209(4), 1701–1705 (2009).

    Article  CAS  Google Scholar 

  2. M. Górny and M. Kawalec: Effects of titanium addition on microstructure and mechanical properties of thin-walled compacted graphite iron castings. J. Mater. Eng. Perform. 22(5), 1519–1524 (2013).

    Article  Google Scholar 

  3. M. Selin, D. Holmgren, and I.L. Svensson: Effect of alloying elements on graphite morphology in CGI. Mater. Sci. Forum 649, 171–176 (2010).

    Article  CAS  Google Scholar 

  4. S. Dawson and T. Schroeder: Practical applications for compacted graphite iron. AFS Trans. 47(5), 1–9 (2004).

    Google Scholar 

  5. J. Liu and N.X. Ding: Effect of type and amount of treatment alloy on compacted graphite produced by the flotret process. AFS Trans. 93, 675–688 (1985).

    CAS  Google Scholar 

  6. G. Cueva, A. Sinatora, W.L. Guesser, and A.P. Tschiptschin: Wear resistance of cast irons used in brake disc rotors. Wear 255(7), 1256–1260 (2003).

    Article  CAS  Google Scholar 

  7. G.F. Geier, W. Bauer, B.J. McKay, and P. Schumacher: Microstructure transition from lamellar to compacted graphite using different modification agents. Mater. Sci. Eng., A 413, 339–345 (2005).

    Article  Google Scholar 

  8. W. Guesser, T. Schroeder, and S. Dawson: Production experience with compacted graphite iron automotive components. AFS Trans. 01–071, 1–11 (2001).

    Google Scholar 

  9. H.Q. Qiu and Z.D. Chen: The forty years of vermicular graphite cast iron development in China (part I). China Foundry 4(2), 91–98 (2007).

    Google Scholar 

  10. X. Yang, Z.H. Zhang, J.T. Wang, and L.Q. Ren: Investigation of nanomechanical properties and thermal fatigue resistance of gray cast iron processed by laser alloying. J. Alloys Compd. 626, 260–263 (2015).

    Article  CAS  Google Scholar 

  11. J.M. Chou, M.H. Hou, and J.L. Lee: Affects of graphite morphology and matrix structure on mechanical properties of cast ions. J. Mater. Sci. 25(4), 1965–1972 (1990).

    Article  CAS  Google Scholar 

  12. M. Selin, D. Holmgren, and I.L. Svensson: Influence of alloying additions on microstructure and thermal properties in compacted graphite irons. Int. J. Cast. Met. Res. 22(1–4), 283–285 (2009).

    Article  CAS  Google Scholar 

  13. M. König and M. Wessén: Influence of alloying elements on microstructure and mechanical properties of CGI. Int. J. Cast. Met. Res. 23(2), 97–110 (2010).

    Article  Google Scholar 

  14. V. Fourlakidis and A. Diószegi: A generic model to predict the ultimate tensile strength in pearlitic lamellar graphite iron. Mater. Sci. Eng., A 618, 161–167 (2014).

    Article  CAS  Google Scholar 

  15. H. Pirgazi, S. Ghodrat, and L.A.I. Kestens: Three-dimensional EBSD characterization of thermo-mechanical fatigue crack morphology in compacted graphite iron. Mater. Charact. 90, 13–20 (2014).

    Article  CAS  Google Scholar 

  16. Y.H. Shy, C.H. Hsu, S.C. Lee, and C.Y. Hou: Effects of titanium addition and section size on microstructure and mechanical properties of compacted graphite cast iron. Mater. Sci. Eng., A 278(1), 54–60 (2000).

    Article  Google Scholar 

  17. I. Hervas, M.B. Bettaieb, A. Thuault, and E. Hug: Graphite nodule morphology as an indicator of the local complex strain state in ductile cast iron. Mater. Des. 52, 524–532 (2013).

    Article  CAS  Google Scholar 

  18. R.A. Gonzaga: Influence of ferrite and pearlite content on mechanical properties of ductile cast irons. Mater. Sci. Eng., A 567, 1–8 (2013).

    Article  CAS  Google Scholar 

  19. S. Kim, S.L. Cockcroft, A.M. Omran, and H. Hwang: Mechanical, wear and heat exposure properties of compacted graphite cast iron at elevated temperatures. J. Alloys Compd. 487(1), 253–257 (2009).

    Article  CAS  Google Scholar 

  20. M. Moonesan, A. Honarbakhsh raouf, F. Madah, and A. Habibollah zadeh: Effect of alloying elements on thermal shock resistance of gray cast iron. J. Alloys Compd. 520, 226–231 (2012).

    Article  CAS  Google Scholar 

  21. H.T. Angus: Cast Iron: Physical, and Engineering Properties, 2nd ed. (British Cast Iron Research Association, London, 1978).

    Google Scholar 

  22. W.J. Parker, R.J. Jenkins, C.P. Butler, and G.L. Abbott: Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity. J. Appl. Phys. 32(9) 1679–1784 (1961).

    Article  CAS  Google Scholar 

  23. ASTM E8M-91: Annual Book of ASTM Standards, 1986 (ASTM International, West Conshohocken, 1986); pp. 637–644.

    Google Scholar 

  24. ASTM A247-67: Annual Book of ASTM Standards, 1990 (ASTM International, West Conshohocken, 1990); pp. 129–130.

    Google Scholar 

  25. E.F. Ryntz, Jr: Prediction of nodular iron microstructure using thermal analysis. AFS Trans. 79, 141–144 (1971).

    CAS  Google Scholar 

  26. N. Fatahalla, A. Abuelezz, and M. Semeida: C, Si and Ni as alloying elements to vary carbon equivalent of austenitic ductile cast iron: Microstructure and mechanical properties. Mater. Sci. Eng., A 504(1), 81–89 (2009).

    Article  Google Scholar 

  27. P.A. Blackmore and K. Morton: Structure-property relationships in graphitic cast irons. Int. J. Fatigue 4(3), 149–155 (1982).

    Article  Google Scholar 

  28. D. Holmgren, R. Källbom, and I.L. Svensson: Influences of the graphite growth direction on the thermal conductivity of cast iron. Metall. Mater. Trans. A 38(2), 268–275 (2007).

    Article  Google Scholar 

  29. I. Asenjo, P. Larranaga, and J. Sertucha: Effect of mould inoculation on formation of chunky graphite in heavy section spheroidal graphite cast iron parts. Int. J. Cast. Met. Res. 20(6), 319–324 (2007).

    Article  CAS  Google Scholar 

  30. M. König: Literature review of microstructure formation in compacted graphite iron. Int. J. Cast. Met. Res. 23(3), 185–192 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yangzhen Liu or Yefei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xing, J., Li, Y. et al. Effect of carbon equivalent on thermal and mechanical properties of compacted graphite cast iron. Journal of Materials Research 31, 2516–2523 (2016). https://doi.org/10.1557/jmr.2016.263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.263

Navigation