Skip to main content
Log in

The ultimate efficiency of organolead halide perovskite solar cells limited by Auger processes

  • Invited Papers
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The key to improve the conversion efficiency of perovskite solar cells lies in the identification and control of different limiting factors. Both intrinsic and extrinsic losses are shown here to be detrimental on conversion efficiency well below the thermodynamic limit. The effect of varying radiative and Auger recombination processes as inevitable intrinsic losses on device performance is shown in this work. The extrinsic losses are shown to impose severe bounds on efficiency limits. Such extrinsic losses include realistic material optical properties, finite diffusion length, ideality factor, parasitic resistance, and parasite absorption. Thus, this work presents the roadmap and the possible approaches in achieving performance beyond what is currently demonstrated in the highest efficiency perovskite solar cells. Additionally, the impact of light concentration, important in Auger limited devices is investigated. Finally, the impact of Auger recombination for perovskite with finite diffusion length in a two-terminal perovskite/silicon tandem device is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. M.A. Green, A. Ho-Baillie, and H.J. Snaith: The emergence of perovskite solar cells. Nat. Photonics 8(7), 506 (2014).

    Article  CAS  Google Scholar 

  2. R.M. Swanson: Approaching the 29% limit efficiency of silicon solar cells. In Conference Record of the Thirty-first IEEE photovoltaic Specialists Conference, Florida, 2005; p. 889.

  3. I. Almansouri, A. Ho-Baillie, S.P. Bremner, and M.A. Green: Supercharging silicon solar cell performance by means of multijunction concept. IEEE J. Photovoltaics 5(3), 968 (2015).

    Article  Google Scholar 

  4. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop: Solar cell efficiency tables (version 47). Prog. Photovoltaics: Res. Appl. 24(1), 3 (2016).

    Article  Google Scholar 

  5. E. Wei, X. Ren, L. Chen, and W.C. Choy: The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106(22), 221104 (2015).

    Article  Google Scholar 

  6. S. Agarwal and P.R. Nair: Device engineering of perovskite solar cells to achieve near ideal efficiency. Appl. Phys. Lett. 107(12), 123901 (2015).

    Article  Google Scholar 

  7. I. Almansouri, A. Ho-Baillie, and M.A. Green: Ultimate efficiency limit of single-junction perovskite and dual-junction perovskite/silicon two-terminal devices. Jpn. J Appl. Phys. 54(8S1), 08KD04 (2015).

    Article  Google Scholar 

  8. P. Löper, B. Niesen, S-J. Moon, S. Martin De Nicolas, J. Holovsky, Z. Remes, M. Ledinsky, F-J. Haug, J-H. Yum, and S. De Wolf: Organic–Inorganic halide perovskites: Perspectives for silicon-based tandem solar cells. IEEE J. Photovoltaics 4(6), 1545 (2014).

    Article  Google Scholar 

  9. N.N. Lal, T.P. White, and K.R. Catchpole: Optics and light trapping for tandem solar cells on silicon. IEEE J. Photovoltaics 4(6), 1380 (2014).

    Article  Google Scholar 

  10. C. Law, L. Miseikis, S. Dimitrov, P. Shakya-Tuladhar, X. Li, P.R. Barnes, J. Durrant, and B.C. O’Regan: Performance and stability of lead perovskite/TiO2, polymer/PCBM, and dye sensitized solar cells at light intensities up to 70 suns. Adv. Mater. 26(36), 6268 (2014).

    Article  CAS  Google Scholar 

  11. R.K. Misra, S. Aharon, B. Li, D. Mogilyansky, I. Visoly-Fisher, L. Etgar, and E.A. Katz: Temperature-and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. 6(3), 326 (2015).

    Article  CAS  Google Scholar 

  12. W. Shockley and H.J. Queisser: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32(3), 510 (1961).

    Article  CAS  Google Scholar 

  13. S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T.C. Sum, and Y.M. Lam: The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells. Energy Environ. Sci. 7(1), 399 (2014).

    Article  CAS  Google Scholar 

  14. T. Tiedje, E. Yablonovitch, G.D. Cody, and B.G. Brooks: Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices 31(5), 711 (1984).

    Article  Google Scholar 

  15. M.A. Green: Limiting efficiency of bulk and thin-film silicon solar cells in the presence of surface recombination. Prog. Photovoltaics: Res. Appl. 7(4), 327 (1999).

    Article  CAS  Google Scholar 

  16. National Renewable Energy Laboratory: Reference solar spectral irradiance: Air Mass 1.5. http://rredc.nrel.gov/solar/spectra/am1.5/ (accessed 27 August, 2015).

  17. P. Löper, M. Stuckelberger, B. Niesen, J.R.M. Werner, M. Filipič, S-J. Moon, J-H. Yum, M. Topič, S. De Wolf, and C. Ballif: Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J. Phys. Chem. Lett. 6(1), 66 (2014).

    Article  Google Scholar 

  18. M.A. Green, Y. Jiang, A.M. Soufiani, and A. Ho-Baillie: Optical properties of photovoltaic organic–inorganic lead halide perovskites. J. Phys. Chem. Lett. 6(23), 4774 (2015).

    Article  CAS  Google Scholar 

  19. C. Wehrenfennig, M. Liu, H.J. Snaith, M.B. Johnston, and L.M. Herz: Homogeneous emission line broadening in the organo lead halide perovskite CH3NH3PbI3−xClx. J. Phys. Chem. Lett. 5(8), 1300 (2014).

    Article  CAS  Google Scholar 

  20. G. Xing, N. Mathews, S. Sun, S.S. Lim, Y.M. Lam, M. Grätzel, S. Mhaisalkar, and T.C. Sum: Long-range balanced electron-and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342(6156), 344 (2013).

    Article  CAS  Google Scholar 

  21. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341 (2013).

    Article  CAS  Google Scholar 

  22. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao, and J. Huang: Electron-hole diffusion lengths >175 µm in solution-grown CH3NH3PbI3 single crystals. Science 347(6225), 967 (2015).

    Article  CAS  Google Scholar 

  23. W. Shockley and W.T. Read: Statistics of the recombinations of holes and electrons. Phys. Rev. 87(5), 835 (1952).

    Article  CAS  Google Scholar 

  24. R.N. Hall: Electron-hole recombination in germanium. Phys. Rev. 87(2), 387 (1952).

    Article  CAS  Google Scholar 

  25. E. Edri, S. Kirmayer, A. Henning, S. Mukhopadhyay, K. Gartsman, Y. Rosenwaks, G. Hodes, and D. Cahen: Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14(2), 1000 (2014).

    Article  CAS  Google Scholar 

  26. K. Taretto, U. Rau, and J.H. Werner: Closed-form expression for the current/voltage characteristics of pin solar cells. Appl. Phys. A. 77(7), 865 (2003).

    Article  CAS  Google Scholar 

  27. M.A. Green: Solar Cells: Operating Principles, Technology, and System Applications (Englewood Cliffs: Prentice-Hall, 1982).

    Google Scholar 

  28. S.M. Sze and K.K. Ng: Physics of Semiconductor Devices (Hoboken: John Wiley & Sons, 2006).

    Book  Google Scholar 

  29. S.S. Hegedus and W.N. Shafarman: Thin-film solar cells: device measurements and analysis. Prog. Photovoltaics: Res. Appl. 12(2–3), 155 (2004).

    Article  CAS  Google Scholar 

  30. J.T-W. Wang, J.M. Ball, E.M. Barea, A. Abate, J.A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, and H.J. Snaith: Low-temperature processed electron collection layers of Graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett. 14(2), 724 (2013).

    Article  Google Scholar 

  31. K. Kalyanasundaram: Dye-sensitized Solar Cells (Lausanne, Switzerland: EPFL Press, 2010).

    Book  Google Scholar 

  32. D-J. Kwak, B-H. Moon, D-K. Lee, C-S. Park, and Y-M. Sung: Comparison of transparent conductive indium tin oxide, titanium-doped indium oxide, and fluorine-doped tin oxide films for dye-sensitized solar cell application. J. Electr. Eng. Technol. 6(5), 684 (2011).

    Article  Google Scholar 

  33. The National Center for Photovoltaics at National Renewable Energy Laboratory: Research cell efficiency Records. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (accessed 15 March, 2016).

Download references

ACKNOWLEDGMENT

The Australian Centre for Advanced Photovoltaics (ACAP) encompasses the Australian-based activities of the Australia U.S. Institute for Advanced Photovoltaics (AUSIAPV) and is supported by the Australian Government through the Australian Renewable Energy Agency (ARENA). This work is also supported by ARENA through project 2014/RND075. In addition, I. Almansouri gratefully acknowledges the financial support for this work provided by the Masdar Institute of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibraheem Almansouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almansouri, I., Green, M.A. & Ho-Baillie, A. The ultimate efficiency of organolead halide perovskite solar cells limited by Auger processes. Journal of Materials Research 31, 2197–2203 (2016). https://doi.org/10.1557/jmr.2016.214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.214

Navigation