Abstract
Bulk nanocrystalline (NC) silvers were fabricated by spark plasma sintering process. The effects of sintering temperature on physical and mechanical properties of the NC silvers were investigated. The results indicate that no impurities were introduced into the bulk compacts during the preparation procedure. Both the density and the electrical conductivity of the NC Ag increase with an increase in sintering temperature. However, the micro-hardness and ultimate tensile strength (UTS) of the bulk compacts increase initially and then decrease with increasing sintering temperature. The NC Ag sintered at 500 °C exhibits the highest micro-hardness of 85.3 HV along with the best compression yield strength of 379 MPa and the highest UTS of 534 MPa. The deterioration of the mechanical properties of the NC Ag sintered at 550 °C should be attributed to the rapid grain growth.
Similar content being viewed by others
References
H. Gleiter: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989).
K. Lu: Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mater. Sci. Eng., R 16, 161 (1996).
Z.F. Liu, Z.H. Zhang, A.V. Korznikov, J.F. Lu, G. Korznikova, and F.C. Wang: A novel and rapid route for synthesizing nanocrystalline aluminum. Mater. Sci. Eng., A 615, 320 (2014).
H.M. Wen, T.D. Topping, D. Isheim, D.N. Seidman, and E.J. Lavernia: Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Mater. 61, 2769 (2013).
B. Srinivasarao, K. Oh-ishi, T. Ohkubo, and K. Hono: Bimodally grained high-strength Fe fabricated by mechanical alloying and spark plasma sintering. Acta Mater. 57, 3277 (2009).
Z.F. Liu, Z.H. Zhang, J.F. Lu, A.V. Korznikov, E. Korznikova, and F.C. Wang: Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminum. Mater. Des. 64, 625 (2014).
G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma: Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat. Mater. 12, 344 (2013).
X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu: Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. USA 111, 7197 (2014).
H.N. Kou, J. Lu, and Y. Li: High-strength and high-ductility nanostructured and amorphous metallic materials. Adv. Mater. 26, 5518 (2014).
K. Lu: Making strong nanomaterials ductile with gradients. Science 345, 1455 (2014).
T. Chookajorn, H.A. Murdoch, and C.A. Schuh: Design of stable nanocrystalline alloys. Science 337, 951 (2012).
A.A. Mazilkin, B.B. Straumal, E. Rabkin, B. Baretzky, S. Enders, S.G. Protasova, O.A. Kogtenkova, and R.Z. Valiev: Softening of nanostructured Al–Zn and Al–Mg alloys after severe plastic deformation. Acta Mater. 54, 3933 (2006).
F.X. Lin, Y.B. Zhang, N.R. Tao, W. Pantleon, and D. Juul Jensen: Effects of heterogeneity on recrystallization kinetics of nanocrystalline copper prepared by dynamic plastic deformation. Acta Mater. 72, 252 (2014).
Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungár, Y.M. Wang, E. Ma, and R.Z. Valiev: Nanostructures in Ti processed by severe plastic deformation. J. Mater. Res. 18, 1908 (2003).
I.J. Beyerlein, N.A. Mara, J.S. Carpenter, T. Nizolek, W.M. Mook, T.A. Wynn, R.J. McCabe, J.R. Mayeur, K. Kang, S. Zheng, J. Wang, and T.M. Pollock: Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu–Nb multilayers fabricated by severe plastic deformation. J. Mater. Res. 28, 1799 (2013).
Q. Wei, Z.L. Pan, X.L. Wu, B.E. Schuster, L.J. Kecskes, and R.Z. Valiev: Microstructure and mechanical properties at different length scales and strain rates of nanocrystalline tantalum produced by high-pressure torsion. Acta Mater. 59, 2423 (2011).
J.L.M. Rupp, C. Solenthaler, P. Gasser, U.P. Muecke, and L.J. Gauckler: Crystallization of amorphous ceria solid solutions. Acta Mater. 55, 3505 (2007).
A. Yazdani, M.J. Hadianfard, and E. Salahinejad: A system dynamics model to estimate energy, temperature, and particle size in planetary ball milling. J. Alloys Compd. 555, 108 (2013).
M. Javanbakht, M.J. Hadianfard, and E. Salahinejad: Microstructure and mechanical properties of a new group of nanocrystalline medical-grade stainless steels prepared by powder metallurgy. J. Alloys Compd. 624, 17 (2015).
I. Matsui, H. Mori, T. Kawakatsu, Y. Takigawa, T. Uesugi, and K. Higashi: Enhancement in mechanical properties of bulk nanocrystalline Fe–Ni alloys electrodeposited using propionic acid. Mater. Sci. Eng., A 607, 505 (2014).
S. Varam, K.V. Rajulapati, and K. Bhanu Sankara Rao: Strain rate sensitivity studies on bulk nanocrystalline aluminium by nanoindentation. J. Alloys Compd. 585, 795 (2014).
S.G. Wang, Y.J. Huang, H.B. Han, M. Sun, K. Long, and Z.D. Zhang: The electrochemical corrosion characterization of bulk nanocrystalline aluminium by x-ray photoelectron spectroscopy and ultra-violet photoelectron spectroscopy. J. Electroanal. Chem. 724, 95 (2014).
Z.H. Zhang, Z.F. Liu, J.F. Lu, X.B. Shen, F.C. Wang, and Y.D. Wang: The sintering mechanism in spark plasma sintering—Proof of the occurrence of spark discharge. Scr. Mater. 81, 56 (2014).
Z.H. Zhang, F.C. Wang, S.K. Lee, Y. Liu, J.W. Cheng, and Y. Liang: Microstructure characteristic, mechanical properties and sintering mechanism of nanocrystalline copper obtained by SPS process. Mater. Sci. Eng., A 523, 134 (2009).
L. Zhang, A.M. Elwazri, T. Zimmerly, and M. Brochu: Fabrication of bulk nanostructured silver material from nanopowders using shockwave consolidation technique. Mater. Sci. Eng., A 487, 219 (2008).
G.A. Sweet, M. Brochu, R.L. Hexemer, Jr., I.W. Donaldson, and D.P. Bishop: Consolidation of aluminum-based metal matrix composites via spark plasma sintering. Mater. Sci. Eng., A 648, 123 (2015).
Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763 (2006).
G.A. Sweet, M. Brochu, R.L. Hexemer, Jr., I.W. Donaldson, and D.P. Bishop: Microstructure and mechanical properties of air atomized aluminum powder consolidated via spark plasma sintering. Mater. Sci. Eng., A 608, 273 (2014).
U. Anselmi-Tamburini, J.E. Garay, Z.A. Munir, A. Tacca, F. Maglia, and G. Spinolo: Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies. J. Mater. Res. 19, 3255 (2004).
O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann: Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv. Eng. Mater. 16, 830 (2014).
Y.Q. Fu, C. Shearwood, B. Xu, L.G. Yu, and K.A. Khor: Characterization of spark plasma sintered Ag nanopowders. Nanotechnology 21, 115707 (2010).
I. Marek, D. Vojtěch, A. Michalcová, and T.F. Kubatík: High-strength bulk nano-crystalline silver prepared by selective leaching combined with spark plasma sintering. Mater. Sci. Eng., A 627, 326 (2015).
H. Wu, S.P. Wen, X.L. Wu, K.Y. Gao, H. Huang, W. Wang, and Z.R. Nie: A study of precipitation strengthening and recrystallization behavior in dilute Al–Er–Hf–Zr alloys. Mater. Sci. Eng., A 639, 307 (2015).
M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).
U. Holzwarth and N. Gibson: The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 6, 534 (2011).
F. Fellah, F. Schoenstein, A. Dakhlaoui Omrani, S.M. Chérif, G. Dirras, and N. Jouini: Nanostructured cobalt powders synthesised by polyol process and consolidated by spark plasma sintering: Microstructure and mechanical properties. Mater. Charact. 69, 1 (2012).
Y.T. Zhu, J. Narayan, J.P. Hirth, S. Mahajan, X.L. Wu, and X.Z. Liao: Formation of single and multiple deformation twins in nanocrystalline fcc metals. Acta Mater. 57, 3763 (2009).
X.Y. Li, Y.J. Wei, L. Lu, K. Lu, and H.J. Gao: Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877 (2010).
Y.T. Zhu, X.Z. Liao, and X.L. Wu: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).
X.H. Yu, J. Rong, Z.L. Zhan, Z. Liu, and J.X. Liu: Effects of grain size and thermodynamic energy on the lattice parameters of metallic nanomaterials. Mater. Des. 83, 159 (2015).
P. Barbosa, N.C. Rosero-Navarro, F. Shi, and F.M.L. Figueiredo: Protonic conductivity of nanocrystalline zeolitic imidazolate framework 8. Electrochim. Acta 153, 19 (2015).
U.P. Muecke, S. Graf, U. Rhyner, and L.J. Gauckler: Microstructure and electrical conductivity of nanocrystalline nickel- and nickel oxide/gadolinia-doped ceria thin films. Acta Mater. 56, 677 (2008).
K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).
T. Hu, K. Ma, T.D. Topping, B. Saller, A. Yousefiani, J.M. Schoenung, and E.J. Lavernia: Improving the tensile ductility and uniform elongation of high-strength ultrafine-grained Al alloys by lowering the grain boundary misorientation angle. Scr. Mater. 78–79, 25 (2014).
A.S. Khan, Y.S. Suh, X. Chen, L. Takacs, and H.Y. Zhang: Nanocrystalline aluminum and iron: Mechanical behavior at quasi-static and high strain rates, and constitutive modeling. Int. J. Plast. 22, 195 (2006).
R. Liu, Z.J. Zhang, L.L. Li, X.H. An, and Z.F. Zhang: Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys. Sci. Rep. 5, 9550 (2015).
ACKNOWLEDGMENT
The authors acknowledge Prof. Hong-Nian Cai and Dr. Wei-Wei Chen for their fruitful discussions and suggestions during the preparation of this manuscript. The study was supported by the National Natural Science Foundation of China (NSFC, China) under Grant Number of 51374039.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, H., Cheng, XW., Zhang, ZH. et al. Microstructures and mechanical properties of bulk nanocrystalline silver fabricated by spark plasma sintering. Journal of Materials Research 31, 2223–2232 (2016). https://doi.org/10.1557/jmr.2016.212
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2016.212