Skip to main content
Log in

Microstructures and mechanical properties of bulk nanocrystalline silver fabricated by spark plasma sintering

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Bulk nanocrystalline (NC) silvers were fabricated by spark plasma sintering process. The effects of sintering temperature on physical and mechanical properties of the NC silvers were investigated. The results indicate that no impurities were introduced into the bulk compacts during the preparation procedure. Both the density and the electrical conductivity of the NC Ag increase with an increase in sintering temperature. However, the micro-hardness and ultimate tensile strength (UTS) of the bulk compacts increase initially and then decrease with increasing sintering temperature. The NC Ag sintered at 500 °C exhibits the highest micro-hardness of 85.3 HV along with the best compression yield strength of 379 MPa and the highest UTS of 534 MPa. The deterioration of the mechanical properties of the NC Ag sintered at 550 °C should be attributed to the rapid grain growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. H. Gleiter: Nanocrystalline materials. Prog. Mater. Sci. 33, 223 (1989).

    Article  CAS  Google Scholar 

  2. K. Lu: Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mater. Sci. Eng., R 16, 161 (1996).

    Article  Google Scholar 

  3. Z.F. Liu, Z.H. Zhang, A.V. Korznikov, J.F. Lu, G. Korznikova, and F.C. Wang: A novel and rapid route for synthesizing nanocrystalline aluminum. Mater. Sci. Eng., A 615, 320 (2014).

    Article  CAS  Google Scholar 

  4. H.M. Wen, T.D. Topping, D. Isheim, D.N. Seidman, and E.J. Lavernia: Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering. Acta Mater. 61, 2769 (2013).

    Article  CAS  Google Scholar 

  5. B. Srinivasarao, K. Oh-ishi, T. Ohkubo, and K. Hono: Bimodally grained high-strength Fe fabricated by mechanical alloying and spark plasma sintering. Acta Mater. 57, 3277 (2009).

    Article  CAS  Google Scholar 

  6. Z.F. Liu, Z.H. Zhang, J.F. Lu, A.V. Korznikov, E. Korznikova, and F.C. Wang: Effect of sintering temperature on microstructures and mechanical properties of spark plasma sintered nanocrystalline aluminum. Mater. Des. 64, 625 (2014).

    Article  CAS  Google Scholar 

  7. G. Liu, G.J. Zhang, F. Jiang, X.D. Ding, Y.J. Sun, J. Sun, and E. Ma: Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat. Mater. 12, 344 (2013).

    Article  CAS  Google Scholar 

  8. X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu: Extraordinary strain hardening by gradient structure. Proc. Natl. Acad. Sci. USA 111, 7197 (2014).

    Article  CAS  Google Scholar 

  9. H.N. Kou, J. Lu, and Y. Li: High-strength and high-ductility nanostructured and amorphous metallic materials. Adv. Mater. 26, 5518 (2014).

    Article  CAS  Google Scholar 

  10. K. Lu: Making strong nanomaterials ductile with gradients. Science 345, 1455 (2014).

    Article  CAS  Google Scholar 

  11. T. Chookajorn, H.A. Murdoch, and C.A. Schuh: Design of stable nanocrystalline alloys. Science 337, 951 (2012).

    Article  CAS  Google Scholar 

  12. A.A. Mazilkin, B.B. Straumal, E. Rabkin, B. Baretzky, S. Enders, S.G. Protasova, O.A. Kogtenkova, and R.Z. Valiev: Softening of nanostructured Al–Zn and Al–Mg alloys after severe plastic deformation. Acta Mater. 54, 3933 (2006).

    Article  CAS  Google Scholar 

  13. F.X. Lin, Y.B. Zhang, N.R. Tao, W. Pantleon, and D. Juul Jensen: Effects of heterogeneity on recrystallization kinetics of nanocrystalline copper prepared by dynamic plastic deformation. Acta Mater. 72, 252 (2014).

    Article  CAS  Google Scholar 

  14. Y.T. Zhu, J.Y. Huang, J. Gubicza, T. Ungár, Y.M. Wang, E. Ma, and R.Z. Valiev: Nanostructures in Ti processed by severe plastic deformation. J. Mater. Res. 18, 1908 (2003).

    Article  CAS  Google Scholar 

  15. I.J. Beyerlein, N.A. Mara, J.S. Carpenter, T. Nizolek, W.M. Mook, T.A. Wynn, R.J. McCabe, J.R. Mayeur, K. Kang, S. Zheng, J. Wang, and T.M. Pollock: Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu–Nb multilayers fabricated by severe plastic deformation. J. Mater. Res. 28, 1799 (2013).

    Article  CAS  Google Scholar 

  16. Q. Wei, Z.L. Pan, X.L. Wu, B.E. Schuster, L.J. Kecskes, and R.Z. Valiev: Microstructure and mechanical properties at different length scales and strain rates of nanocrystalline tantalum produced by high-pressure torsion. Acta Mater. 59, 2423 (2011).

    Article  CAS  Google Scholar 

  17. J.L.M. Rupp, C. Solenthaler, P. Gasser, U.P. Muecke, and L.J. Gauckler: Crystallization of amorphous ceria solid solutions. Acta Mater. 55, 3505 (2007).

    Article  CAS  Google Scholar 

  18. A. Yazdani, M.J. Hadianfard, and E. Salahinejad: A system dynamics model to estimate energy, temperature, and particle size in planetary ball milling. J. Alloys Compd. 555, 108 (2013).

    Article  CAS  Google Scholar 

  19. M. Javanbakht, M.J. Hadianfard, and E. Salahinejad: Microstructure and mechanical properties of a new group of nanocrystalline medical-grade stainless steels prepared by powder metallurgy. J. Alloys Compd. 624, 17 (2015).

    Article  CAS  Google Scholar 

  20. I. Matsui, H. Mori, T. Kawakatsu, Y. Takigawa, T. Uesugi, and K. Higashi: Enhancement in mechanical properties of bulk nanocrystalline Fe–Ni alloys electrodeposited using propionic acid. Mater. Sci. Eng., A 607, 505 (2014).

    Article  CAS  Google Scholar 

  21. S. Varam, K.V. Rajulapati, and K. Bhanu Sankara Rao: Strain rate sensitivity studies on bulk nanocrystalline aluminium by nanoindentation. J. Alloys Compd. 585, 795 (2014).

    Article  CAS  Google Scholar 

  22. S.G. Wang, Y.J. Huang, H.B. Han, M. Sun, K. Long, and Z.D. Zhang: The electrochemical corrosion characterization of bulk nanocrystalline aluminium by x-ray photoelectron spectroscopy and ultra-violet photoelectron spectroscopy. J. Electroanal. Chem. 724, 95 (2014).

    Article  CAS  Google Scholar 

  23. Z.H. Zhang, Z.F. Liu, J.F. Lu, X.B. Shen, F.C. Wang, and Y.D. Wang: The sintering mechanism in spark plasma sintering—Proof of the occurrence of spark discharge. Scr. Mater. 81, 56 (2014).

    Article  CAS  Google Scholar 

  24. Z.H. Zhang, F.C. Wang, S.K. Lee, Y. Liu, J.W. Cheng, and Y. Liang: Microstructure characteristic, mechanical properties and sintering mechanism of nanocrystalline copper obtained by SPS process. Mater. Sci. Eng., A 523, 134 (2009).

    Article  CAS  Google Scholar 

  25. L. Zhang, A.M. Elwazri, T. Zimmerly, and M. Brochu: Fabrication of bulk nanostructured silver material from nanopowders using shockwave consolidation technique. Mater. Sci. Eng., A 487, 219 (2008).

    Article  CAS  Google Scholar 

  26. G.A. Sweet, M. Brochu, R.L. Hexemer, Jr., I.W. Donaldson, and D.P. Bishop: Consolidation of aluminum-based metal matrix composites via spark plasma sintering. Mater. Sci. Eng., A 648, 123 (2015).

    Article  CAS  Google Scholar 

  27. Z.A. Munir, U. Anselmi-Tamburini, and M. Ohyanagi: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763 (2006).

    Article  CAS  Google Scholar 

  28. G.A. Sweet, M. Brochu, R.L. Hexemer, Jr., I.W. Donaldson, and D.P. Bishop: Microstructure and mechanical properties of air atomized aluminum powder consolidated via spark plasma sintering. Mater. Sci. Eng., A 608, 273 (2014).

    Article  CAS  Google Scholar 

  29. U. Anselmi-Tamburini, J.E. Garay, Z.A. Munir, A. Tacca, F. Maglia, and G. Spinolo: Spark plasma sintering and characterization of bulk nanostructured fully stabilized zirconia: Part I. Densification studies. J. Mater. Res. 19, 3255 (2004).

    Article  CAS  Google Scholar 

  30. O. Guillon, J. Gonzalez-Julian, B. Dargatz, T. Kessel, G. Schierning, J. Räthel, and M. Herrmann: Field-assisted sintering technology/spark plasma sintering: Mechanisms, materials, and technology developments. Adv. Eng. Mater. 16, 830 (2014).

    Article  CAS  Google Scholar 

  31. Y.Q. Fu, C. Shearwood, B. Xu, L.G. Yu, and K.A. Khor: Characterization of spark plasma sintered Ag nanopowders. Nanotechnology 21, 115707 (2010).

    Article  CAS  Google Scholar 

  32. I. Marek, D. Vojtěch, A. Michalcová, and T.F. Kubatík: High-strength bulk nano-crystalline silver prepared by selective leaching combined with spark plasma sintering. Mater. Sci. Eng., A 627, 326 (2015).

    Article  CAS  Google Scholar 

  33. H. Wu, S.P. Wen, X.L. Wu, K.Y. Gao, H. Huang, W. Wang, and Z.R. Nie: A study of precipitation strengthening and recrystallization behavior in dilute Al–Er–Hf–Zr alloys. Mater. Sci. Eng., A 639, 307 (2015).

    Article  CAS  Google Scholar 

  34. M.A. Meyers, A. Mishra, and D.J. Benson: Mechanical properties of nanocrystalline materials. Prog. Mater. Sci. 51, 427 (2006).

    Article  CAS  Google Scholar 

  35. U. Holzwarth and N. Gibson: The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 6, 534 (2011).

    Article  CAS  Google Scholar 

  36. F. Fellah, F. Schoenstein, A. Dakhlaoui Omrani, S.M. Chérif, G. Dirras, and N. Jouini: Nanostructured cobalt powders synthesised by polyol process and consolidated by spark plasma sintering: Microstructure and mechanical properties. Mater. Charact. 69, 1 (2012).

    Article  CAS  Google Scholar 

  37. Y.T. Zhu, J. Narayan, J.P. Hirth, S. Mahajan, X.L. Wu, and X.Z. Liao: Formation of single and multiple deformation twins in nanocrystalline fcc metals. Acta Mater. 57, 3763 (2009).

    Article  CAS  Google Scholar 

  38. X.Y. Li, Y.J. Wei, L. Lu, K. Lu, and H.J. Gao: Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877 (2010).

    Article  CAS  Google Scholar 

  39. Y.T. Zhu, X.Z. Liao, and X.L. Wu: Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57, 1 (2012).

    Article  CAS  Google Scholar 

  40. X.H. Yu, J. Rong, Z.L. Zhan, Z. Liu, and J.X. Liu: Effects of grain size and thermodynamic energy on the lattice parameters of metallic nanomaterials. Mater. Des. 83, 159 (2015).

    Article  CAS  Google Scholar 

  41. P. Barbosa, N.C. Rosero-Navarro, F. Shi, and F.M.L. Figueiredo: Protonic conductivity of nanocrystalline zeolitic imidazolate framework 8. Electrochim. Acta 153, 19 (2015).

    Article  CAS  Google Scholar 

  42. U.P. Muecke, S. Graf, U. Rhyner, and L.J. Gauckler: Microstructure and electrical conductivity of nanocrystalline nickel- and nickel oxide/gadolinia-doped ceria thin films. Acta Mater. 56, 677 (2008).

    Article  CAS  Google Scholar 

  43. K.S. Kumar, H. Van Swygenhoven, and S. Suresh: Mechanical behavior of nanocrystalline metals and alloys. Acta Mater. 51, 5743 (2003).

    Article  CAS  Google Scholar 

  44. T. Hu, K. Ma, T.D. Topping, B. Saller, A. Yousefiani, J.M. Schoenung, and E.J. Lavernia: Improving the tensile ductility and uniform elongation of high-strength ultrafine-grained Al alloys by lowering the grain boundary misorientation angle. Scr. Mater. 78–79, 25 (2014).

    Article  CAS  Google Scholar 

  45. A.S. Khan, Y.S. Suh, X. Chen, L. Takacs, and H.Y. Zhang: Nanocrystalline aluminum and iron: Mechanical behavior at quasi-static and high strain rates, and constitutive modeling. Int. J. Plast. 22, 195 (2006).

    Article  CAS  Google Scholar 

  46. R. Liu, Z.J. Zhang, L.L. Li, X.H. An, and Z.F. Zhang: Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys. Sci. Rep. 5, 9550 (2015).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors acknowledge Prof. Hong-Nian Cai and Dr. Wei-Wei Chen for their fruitful discussions and suggestions during the preparation of this manuscript. The study was supported by the National Natural Science Foundation of China (NSFC, China) under Grant Number of 51374039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Hui Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Cheng, XW., Zhang, ZH. et al. Microstructures and mechanical properties of bulk nanocrystalline silver fabricated by spark plasma sintering. Journal of Materials Research 31, 2223–2232 (2016). https://doi.org/10.1557/jmr.2016.212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.212

Navigation